
i

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A COMPARISON OF AIRCRAFT DEPOT

INDUCTION PROCESSES: ASPA AND PDM

by
Michael D. Walls
September, 1996

 Thesis Advisor: Arnold H. Buss
Thesis Co-Advisor: Donald Eaton

ii

i

REPORT DOCUMENTATION PAGE Form approved
OMB No. 0704-188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information including suggestions for reducing this burden, to
Washington Headquarters services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September, 1996.

3. REPORT TYPE AND DATES
COVERED

Master’s Thesis
4. TITLE AND SUBTITLE
A COMPARISON OF AIRCRAFT DEPOT INDUCTION

PROCESSES: ASPA AND PDM (U)

5. FUNDING NUMBERS

6. AUTHOR(S)
Walls, Michael D.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of

Defense or the U.S. Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT
 Distribution authorized to DOD Components only; Proprietary Information

Involved; September 1996; Other requests for this document must be
referred to Superintendent, Code 043, Naval Postgraduate School, Monterey,
CA 93943-5000 via Defense Technical Information Center, 8725 John J.
Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
 The purpose of this thesis is to compare two predominant decision processes for aircraft depot inductions.
The first process, Aircraft Service Period Adjustment (ASPA), is currently applied to the majority of Naval aircraft.
The decision to induct an aircraft through ASPA is based on the results of subjective, periodic inspection. The
second process, Programmed Depot Maintenance (PDM), is used by the U.S. Air Force. The Navy is also
experimenting with its own form of PDM, called Phased Depot Maintenance. The PDM concept is based on the
idea that regular overhaul of aircraft reduces man-hour requirements, turn-around time, and the variability of
planning factors. The decision to induct an aircraft under PDM is entirely objective, as it is based solely on
calendar time. A statistical comparison of the long term effects of ASPA and PDM is achieved by analyzing the
output data of a simulation model designed in this thesis. Model output includes maintenance man-hour and turn-
around time per depot overhaul, and the cumulative time in the depot and number of depot periods over the length
of the simulation. The analysis provides insight into the benefits and trade-offs involved with each decision
process.
14. SUBJECT TERMS 15. NUMBER OF PAGES

86
Aviation, Depot, ASPA, PDM, Simulation 16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS
PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF THIS
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18

ii

iii

Distribution authorized to DOD Components Only; Proprietary Information
Inolved; September 1996; Other requests for this document must be referred

to Superintendent, Code 043, Naval Postgraduate School, Monterey, CA
 93943-5000 via Defense Technical Information Center, 8725 John J. Kingman

Rd., STE 0944, Ft. Belvoir, VA 22060-6218

 A COMPARISON OF AIRCRAFT DEPOT INDUCTION PROCESSES:
ASPA AND PDM

Michael D. Walls
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1986

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

September 1996

Author:
Michael D. Walls

Approved by:
Arnold H. Buss, Thesis Advisor

Donald Eaton, Thesis Co-Advisor

Samuel H. Parry, Second Reader

Frank Petho, Chairman, Department of Operations Research

iv

v

ABSTRACT

The purpose of this thesis is to compare two predominant decision processes for

aircraft depot inductions. The first process, Aircraft Service Period Adjustment (ASPA),

is currently applied to the majority of Naval aircraft. The decision to induct an aircraft

through ASPA is based on the results of subjective, periodic inspection. The second

process, Programmed Depot Maintenance (PDM), is used by the U.S. Air Force. The

Navy is also experimenting with its own form of PDM, called Phased Depot Maintenance.

The PDM concept is based on the idea that regular overhaul of aircraft reduces man-hour

requirements, turn-around time, and the variability of planning factors. The decision to

induct an aircraft under PDM is entirely objective, as it is based solely on calendar time. A

statistical comparison of the long term effects of ASPA and PDM is achieved by analyzing

the output data of a simulation model designed in this thesis. Model output includes

maintenance man-hour and turn-around time per depot overhaul, and the cumulative time

in the depot and number of depot periods over the length of the simulation. The analysis

provides insight into the benefits and trade-offs involved with each decision process.

vi

vii

Thesis Disclaimer

The reader is cautioned that assumptions made with regard to the data used in this

research are those of the author. Furthermore, although every effort has been made to

ensure that the computer simulation program is free of computational and logical errors, it

cannot be considered validated. Any application of information obtained from this thesis

without further validation is at the risk of the user.

viii

ix

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKGROUND .. 1

1. History ... 1

2. EA-6B Prowler .. 2

B. OBJECTIVE... 3

II. DEPOT INDUCTION PROCESSES... 5

A. INTRODUCTION .. 5

B. NAVAL AVIATION MAINTENANCE ... 5

C. AIRCRAFT SERVICE PERIOD ADJUSTMENT (ASPA) 6

D. PROGRAMMED DEPOT MAINTENANCE (PDM) 9

E. COMPARISON, ASPA AND PDM ... 10

F. OTHER CONSIDERATIONS... 11

1. Major Repair .. 12

2. Design Modifications.. 12

G. PHASED DEPOT MAINTENANCE.. 13

III. METHODOLOGY.. 15

A. INTRODUCTION .. 15

B. SIMULATION.. 15

x

IV. SIMULATION DESCRIPTION .. 17

A. ASSUMPTIONS... 17

B. INPUT.. 17

1. User Input to the Simulation... 17

2. File Input to the Simulation .. 17

C. MODELED OBJECTS ... 18

1. Operations.. 18

2. Aircraft... 18

3. Screen .. 18

4. Inspector .. 19

5. Depot ... 19

6. Depot Manager .. 20

D. GENERATION OF FLIGHT DATA .. 20

E. GENERATION OF ASPA FAILURE RATES.. 20

F. GENERATION OF FATIGUE LIFE EXPENDED (FLE) 21

G. GENERATION OF MAINTENANCE MAN HOURS (MMHRS)................ 21

V. MODEL IMPLEMENTATION... 23

A. BASELINE SIMULATION RUN... 23

B. SIMULATION OUTPUT AND ANALYSIS .. 23

C. SENSITIVITY ANALYSIS.. 25

D. DISCUSSION .. 27

xi

VI. CONCLUSIONS AND RECOMMENDATIONS .. 29

A. CONCLUSIONS AND RECOMMENDATIONS ... 29

B. FURTHER RESEARCH... 30

LIST OF REFERENCES .. 31

APPENDIX A... 33

APPENDIX B. .. 35

APPENDIX C. .. 37

APPENDIX D... 39

APPENDIX E. .. 41

APPENDIX F. .. 43

INITIAL DISTRIBUTION LIST .. 85

xii

xiii

EXECUTIVE SUMMARY

The majority of aircraft type model series in the current Navy inventory are

expected to remain in operational service well beyond the original intent of design

engineers. These aircraft require periodic depot level maintenance, or overhauls, to ensure

that they are structurally sound and capable of meeting operational requirements.

The current process used for determining which Naval aircraft should be inducted

into aviation depots for overhaul is the Aircraft Service Period Adjustment Program

(ASPA). ASPA is outwardly logical in that the intent of the program is to prevent the

unnecessary maintenance of aircraft. Although there are specific ASPA inspection

guidelines, there is an inherent subjectivity to the process which has had a detrimental

effect on operational readiness. Many aircraft remain in operational service for eight to

ten years. When the aircraft finally arrive at the depot for basic overhaul, numerous

unplanned maintenance problems, or “over and aboves,” are discovered. These over and

above issues require substantial amounts of additional maintenance hours and material to

rectify. Increased maintenance and material requirements translate directly to reduced

operational availability and increased cost.

An alternative to ASPA is a process by which the decision to induct aircraft into

depots is based solely on calendar time in operation. This process, known as Programmed

or Phased Depot Maintenance (PDM), removes the subjectivity of the ASPA inspection by

strict adherence to an established induction schedule. The benefits of PDM are realized in

lower and more predictable levels of maintenance hours and material. The resultant

consistency in planning factors allows for more accurate planning by both operational and

xiv

maintenance planners. The extended benefits of PDM are increased operational

availability of aircraft and reduced cost for depot overhauls.

The objective of this study is a comparison of the effectiveness of ASPA and

PDM. Effectiveness is expressed in terms of the maintenance man-hours and turn-around

time required for a depot overhaul period. The basis for this study is the EA-6B Prowler,

the premier tactical electronic warfare platform in the U.S. arsenal. A computer model

was designed to simulate the long term effects of each policy on the EA-6B inventory.

The model emulates fleet-to-depot cycles of each EA-6B over a 30 to 40 year period. A

simulation run is conducted independently for each induction process under the same

conditions. A statistical comparison of measures of effectiveness (MOE) is conducted to

provide insight into the benefits and trade-offs that are realized from each process. The

MOE’s used in the comparison are average maintenance man-hour requirement and turn-

around time per depot overhaul, and the cumulative depot times and number of depot

periods per aircraft over the length of the simulation.

The results of the simulation show that a PDM overhaul requires fewer man-hours

and reduces turn-around time per aircraft than does ASPA. The results also show that

PDM planning factors are less variable and therefore more predictable. The model output

indicates that the cumulative depot time and number of depot periods increase under

PDM, since there is no chance for induction deferral. This result suggests a trade-off

between a greater number of shorter, less intensive depot periods and a fewer number of

longer, more intensive depot periods. The results of this model can provide decision

xv

makers with valuable insight into the effects of ASPA and PDM policies. This insight may

be used when determining which process to apply to future type model series aircraft.

xvi

1

I. INTRODUCTION

A. BACKGROUND

1. History

Modern military aircraft are often in operational service well beyond their original

design specifications. The Boeing B-52 Stratofortress flew for the first time in April, 1952

and will operate in the United States Air Force beyond the year 2000 [Ref 1, p. 107]. The

Grumman A-6E Intruder entered service in the United States Navy in 1963 and will not be

completely retired until early 1997 [Ref 2, p. 405]. As aircraft remain in service beyond

their expected lifetimes, extensive overhaul maintenance becomes essential.

Overhaul maintenance is expensive, time consuming, and requires specialized

equipment and facilities beyond the capabilities of operational units. The Department of

Defense has used organic and commercial depots to overhaul and repair aircraft since

1941 [Ref 9, p.4]. At the height of the defense build-up of the 1980’s, the Department of

the Navy had an extensive depot network capable of serving the wide variety of aircraft

and systems operating in the fleet. Aircraft assigned to the Pacific Fleet were serviced at

Naval Aviation Depots Alameda and North Island located in California. Atlantic Fleet

aircraft were serviced at NADEP Norfolk, Virginia, NADEP Jacksonville, Florida and

NADEP Pensacola, Florida. The depot at MCAS Cherry Point, North Carolina also

serviced Navy and Marine Corps aircraft.

The Navy Depot system, however, has not faired well since the Base Realignment

and Closure committee began targeting bases and installations for closure in an effort to

2

reduce so called “excess infrastructure.” The Navy must now rely on three organic

Aviation Depots to perform depot level maintenance on aircraft: NADEPs Jacksonville,

North Island and Cherry Point. Excess workload may in some cases be assumed by

commercial sources like Grumman Facility at St. Augustine, Florida.

The services provided by the Navy depot system are critical to the operational

readiness of fleet combat units. Maintaining the material condition of naval aircraft is an

essential part of the readiness formula and the services provided by depots are critical to

that purpose. At issue is the amount of time an aircraft spends in the depot over its life

cycle and the cost of performing depot level repairs and overhauls. Ideally, operational

units would always be able to turn in an aircraft to the depot and immediately receive a

replacement. Budgetary realities make that prospect unlikely. Therefore, when an aircraft

is inducted into a depot, the effects on readiness are immediate. Inventory managers are

faced with the balancing aircraft operational availability and material condition while

constrained by limited fiscal and material resources.

2. EA-6B Prowler

In 1995, the Air Force deferred responsibility for tactical electronic warfare to the

Navy. Although the EA-6B Prowler has been in service since 1971, the expanded mission

of the community will require the continued service of the aircraft until 2015. There are

currently 127 EA-6B Prowler aircraft in the Navy Total Overall Aircraft Inventory

(TOAI). Aircraft in the TOAI are distributed to operational units as a part of the primary

aircraft inventory (PAI), or to the maintenance “pipeline” as a part of the backup aircraft

inventory. By the year 2001, the Prowler TOAI will have decreased to 123 aircraft while

3

104 aircraft will be required to meet anticipated operational, training and testing

commitments. To meet the expected demand and inevitable unexpected maintenance

burdens of the next 20 years, inventory managers will have to maintain the highest levels

of aircraft material condition while maintaining availability requirements.

Many of the EA-6B airframes currently in the fleet have been in operational status

for five or more years. In some cases, aircraft have not been in the depot for ten years.

The EA-6B inventory managers are now faced with the dilemma of inducting aircraft into

the depot for desperately needed overhaul at the expense of aircraft availability to the

fleet.

B. OBJECTIVE

There are currently two predominant aircraft depot maintenance philosophies

ascribed to in the Department of Defense. The first philosophy suggests that the decision

to induct an aircraft into an aviation depot for overhaul be based on subjective

interpretation of general material condition guidelines. The second philosophy prescribes

induction on a calendar schedule without regard to apparent material condition. The

purpose of this project is to provide some insight into the effects of each process on labor

requirements and aircraft down time. An understanding of these issues will assist the

aircraft inventory manager in making sound readiness and fiscal decisions.

4

5

II. DEPOT INDUCTION PROCESSES

A. INTRODUCTION

The first section of this chapter is a brief description of the Naval Aviation

maintenance concept. Subsequent sections describe the Aircraft Service Period

Adjustment (ASPA), Programmed and Phased Depot Maintenance (PDM) and other

decision considerations used in the aircraft depot induction process.

B. NAVAL AVIATION MAINTENANCE

The Naval Aviation maintenance concept is centered around a three tier system.

Figure 1 depicts the flow of repairable parts and systems through the three levels of

maintenance. Operational maintenance is performed by technicians assigned to squadron

or wing level units and is usually limited to basic servicing of the aircraft and removal and

replacement of faulty components. Components removed at this level are sent to an

intermediate maintenance facility. Intermediate maintenance facilities are located at most

Naval Air Stations and aboard aircraft carriers. Here components are repaired and held

until issued to operational units when required. If the intermediate facility is incapable of

repairing the component it may be forwarded to the final tier of the system, the depot.

Aircraft components or systems are inducted into the depot for overhaul, extensive repair

or engineering modification. Overhaul is referred to as Standard Depot Level

Maintenance or SDLM. The specific tasks performed during a SDLM are based on

extensive reliability centered maintenance and outlined in the type model series (TMS)

SDLM Specification.

6

Figure 1. Naval Aviation Levels of Maintenance

C. AIRCRAFT SERVICE PERIOD ADJUSTMENT (ASPA)

The Department of the Navy instituted the Aircraft Service Period Adjustment,

ASPA, program in 1982. The philosophy of ASPA was driven by a desire to avoid

inducting aircraft of sound material condition into the depot for overhaul. The concept

was supported by the idea that the material condition of individual aircraft do not

deteriorate at the same rate. Aircraft should be inducted on the basis of “on condition”

rather than “on time” [Ref 4, p. 2].

Each TMS in the Navy inventory is assigned an Operational Service Period, OSP,

per OPNAVINST 3110.11T. The OSP defines the minimum time period between SDLM

and “provides the basis for planning, programming and budgeting for the particular TMS”

[Ref 4, p. 1]. A Planning and Estimator (P&E) team is dispatched from the Cognizant

Field Activity (CFA) when an aircraft reaches its OSP. The objective of the P&E team is

to asses the material condition of the aircraft and to determine suitability for continued

service. The P&E team will forward an ASPA P&E Report to the aircraft controlling

custodian, ACC, within three days of the inspection completion. The report will

O - Level

Service
Repair

I - Level

Component Repair
Replacement

D - Level
SDLM

Major Repair
Design Modification

7

recommend immediate depot induction for SDLM, induction within 90 days of the current

PED or adjustment of the PED to an additional 12 months. Subsequent ASPA inspections

will be performed within PED minus 180 days and PED + 90 days. This cycle continues

until the aircraft fails the material condition inspection. The induction of an aircraft can be

further delayed if a waiver is issued by the Office of the Chief of Naval Operations

(N881C) [Ref 5, p. 4].

The ASPA process is an outwardly logical method for determining if an aircraft

should be inducted for overhaul. ASPA is supported by the idea that aircraft above a

material condition threshold requiring SDLM should be kept in operational status.

Resources should be preserved for those aircraft below that threshold. This is especially

true in the Navy, where fiscal resources must be spread throughout all of the warfare and

support communities. The data in Figure 2 depict ASPA inspection results for EA-6B

aircraft in their first operational tour. The data show that of the 60 Prowlers inspected,

most passed early ASPA inspections. By deferring induction, the aircraft were available

for operations well beyond the original 54 month OSP. In many cases, aircraft were

operational for 10 years.

EA-6B Tour 1
ASPA Results 1988-1995

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5

ASPA

%
 D

ef
er

ra
l

Figure 2. EA-6B ASPA Inspection Results

8

On the surface, ASPA provides an objective method for selecting aircraft for

induction into the depot. ASPA induction recommendations are based on definitive

criteria which are continually evolved to reflect current material and economic conditions

[Ref 4, p 2]. There is, however, an inherently subjective nature to the process. The

recommendations of the inspection team are based primarily on the sound judgment and

expertise of the team members rather than rigid quantitative criteria. The final decision to

induct is then based on that recommendation and the ACC’s evaluation of the total

readiness situation.

While the data in Figure 2 suggest that the Navy is preserving resources through

ASPA, there are significant underlying implications. Maintenance man-hours (MMHRS)

and turn-around time (TAT) are two key factors that are adversely affected by ASPA in

the long run. Each of these factors becomes more unpredictable as the time between

depot rework periods increases. Figure 3 shows the relationship between MMHRS and

the time between depot reworks, IDT, for the EA-6B from 1980 to 1995. The data show

that the variability of MMHRS increases significantly as IDT increases beyond the six year

point. A similar plot for TAT is included in Appendix A.

EA-6B MMHRS vs IDT
1993-1995

0
10000
20000
30000
40000

0 2000 4000 6000

IDT (Days)

M
M

H
R

S

(H
rs

)

Figure 3. MMHRS: µ = 23,496 hrs / σ = 5,223 hrs

9

Further inspection of the data in Figure 3 reveals an increasing trend in the number

of MMHRS required for a rework period as the inter-depot time increases beyond

approximately 2500 days. The same trends are apparent for TAT and cost. The behavior

exhibited by the Prowler is not unique. Thirty-nine F-14 Tomcats were inducted for

SDLM between 1991 and 1994. The mean man-hours per aircraft was 28,127 hrs with a

standard deviation of 4,146 hrs [Ref 3, p.40]. The long run effects of deferring aircraft

depot inductions are increased MMHRS and TAT which inevitably result in higher cost

and decreased availability of operational aircraft.

D. PROGRAMMED DEPOT MAINTENANCE (PDM)

The Navy ASPA program is not practiced by either the United States Air Force or

the Commercial Airline industry. These groups employ a system for inducting aircraft into

depots for overhaul based on service time rather than the subjectivity of an inspection

team. The Air Force version of PDM, in this case Programmed Depot Maintenance,

requires that aircraft be inducted into the depot for overhaul after reaching an established

flight hour threshold. The objective of PDM is to ensure that the most mission capable

aircraft are produced through expeditious and economic depot processes [Ref 3, p. 5].

Like the Navy, PDM is used in an effort to minimize the effect of overhaul maintenance on

combat readiness. PDM differs from ASPA most significantly by removing the

subjectivity in the induction decision process. Each aircraft shall be inducted on the basis

of calendar time or flight hour threshold. If an aircraft is not inducted within the

designated time window, PDM date +/- 90 days, the aircraft is grounded. Figure 4 shows

PDM data for the General Dynamics EF-111 Raven, the U.S. Air Force tactical electronic

10

warfare aircraft. Each point on the graph represents one of 24 observations of man hour

requirements for EF-111 overhauls. Each of the 24 aircraft were inducted into the depot

at the 1,500 hour mark, roughly equivalent to four years.

EF-111 MMHRS CY 93-96

0

10000

20000

30000

0 5 10 15 20 25

PDM Event

M
M

H
R

S

Figure 4. MMHRS: µ = 25,311 hrs / σ = 1438 hrs

The data show that the man hour requirement for PDM’s on most of the aircraft in

the sample was relatively constant. The plot depicting TAT’s for the sample aircraft,

Appendix B, shows similar results. Reduced variability of these critical planning factors is

an obvious advantage to aircraft logistics planners.

E. COMPARISON, ASPA AND PDM

The ASPA program is conceptually logical. Unfortunately, the degree to which

subjectivity is introduced into the depot induction process creates monumental planning

and programming problems for aircraft inventory managers. PDM removes that

subjectivity, thereby decreasing the variability of the planning factors used to determine

optimal resource allocation. The following discussion offers a comparative example of the

effects of ASPA and PDM on two similar aircraft.

11

While the EA-6B and the EF-111 are dissimilar airframes flown in different

environments, the two aircraft are close in age and perform the same types of missions.

With the exception of aircraft carrier catapults and landing, both aircraft undergo similar

stresses in flight. This similarity offers an excellent opportunity to compare the results of

ASPA and PDM with respect to the planning and programming factors introduced in

Section C of this chapter.

Comparison of the standard deviation of MMHRS to the mean MMHRS required

for the overhaul of each aircraft, Figures 2 and 3, offers some degree of quantitative

evidence that ASPA results in a higher level of variability than PDM. Another, and

perhaps more meaningful, measure of variability is the coefficient of variation [Ref 6,

p.212]. The coefficient of variation, Cx , gives the standard deviation as a proportion of

the mean of a sample. As Cx increases, the variability of the sample increases. This

difference in variation depicted by Equation 1 offers more evidence that PDM is less

variable, and therefore a better process for logistics planning than ASPA.

CEF-111 = 0.0568 < 0.2223 = CEA-6B EQ (1)

Comparison of the coefficients of variation with respect to TAT produced similar results.

Appendix C provides a detailed computation of the coefficients of variation for each

aircraft.

F. OTHER CONSIDERATIONS

Two significant maintenance issues that may result in an aircraft being inducted

into the depot are major repair and design modifications. These types of actions are

12

usually too intensive and time consuming to be performed at the operational or

intermediate levels. Aircraft inventory managers must consider these issues along with

periodic overhaul when developing planning and programming factors.

1. Major Repair

The most significant depot level repair issue facing the EA-6B community is

replacement of the wing center section due to expended fatigue life. A material becomes

fatigued as it undergoes inflight aerodynamic stresses. Fatigue Life Expended, FLE, is a

measure of the percentage of service life that a material already used and represents the

level of fatigue damage that the material has accumulated [Ref 8, p.7]. Fatigue is an

insidious problem because it is visually undetectable until catastrophic failure of the

material occurs. FLE is determined by mathematical models and serves as a predictor of

impending structural failure. The wing center section of the EA-6B is especially

vulnerable to fatigue because of the design of the wing and in some cases, the material of

which the wing is made. Wing center sections on the Prowler are made from one of two

materials. The materials do not expend their lifetimes at the same rate.

 2. Design Modifications

In an effort to maintain the war fighting advantage through advanced technology,

the EA-6B has undergone several design modifications or “Block Upgrades.” There are

currently three different configurations of the EA-6B operating in the fleet. Another

configuration is scheduled for introduction beginning in 1997. Block upgrades are usually

incorporated at a depot, but may be by a depot field team.

13

G. PHASED DEPOT MAINTENANCE

By the late 1980’s, most Naval aircraft had been in service well beyond their

original design specifications. Since the introduction of ASPA, the material condition of

aircraft began to decline and the amount organizational maintenance requirements began

to detract from fleet-wide combat readiness. The Navy responded to the problem by

searching for different ways of managing aircraft through their expanding life cycles. One

answer was Phased Depot Maintenance, similar to the Air Force version of PDM. Navy

PDM differs from the Air Force process in that the Navy induction depot criteria are based

primarily upon calendar time rather than flight hours. The basic principles are, however,

the same; overhaul aircraft on a scheduled basis to reduce the variability of planning and

programming factors. Initial exploration for Navy PDM began in 1989 with an analysis of

the P-3C Orion, a land based, multi-engine maritime patrol aircraft. It has been in service

since 1970 and is expected to continue operations until 2015. The original service life of

the P-3C has been extended from 30 to 50 years. The P-3C PDM process requires

induction of aircraft at four year intervals, with a complete PDM cycle covering 12 years

[Ref 3, p.29].

The P-3C PDM program is performing well. The planned TAT for P-3C PDM was

145 calendar days in CY 95 and 126 days in CY 96. The mean TAT’s during each

calendar year were within two months of the planned goals; µ95 = 183 days, σ95 = 22 days

and µ96= 148 days, σ96 = 35 days. Figure 5 [Ref 12] graphically depicts that actual TAT’s

are converging toward planned goals. The long run effects are clear; shorter times in the

14

P-3C PDM CY 95 - CY 96

0
50

100
150
200
250

0 10 20 30 40

PDM Event

T
A

T
 (

D
ay

s)

 Figure 5. P-3C PDM, Solid lines represent planned TATs

depot for aircraft result in increased operational availability, and decreased variability in

planning factors result in decreased costs.

CY 95 CY 96

15

 III. METHODOLOGY

A. INTRODUCTION

This chapter describes the concept and development of the model. Later chapters

will expand in detail on the formulation of the simulation.

B. SIMULATION

The goal of the simulation, written in MODSIM II [Ref 7], is to compare the long

run effects of ASPA and PDM as processes for inducting EA-6B aircraft into aviation

depots for overhaul. The simulation models the operational availability of a sample of EA-

6B’s over a 30 year lifetime while employing either ASPA or PDM. Operational

availability is measured as the amount of time an aircraft is in operational status or the

amount of time an aircraft is not in the depot. Simulation time is based on months.

The sample of aircraft was taken from the current inventory of operating Prowlers.

The simulation commences with the delivery of the first lot of aircraft, with additional lots

of aircraft incorporated at the beginning of subsequent months. The delivery dates of

aircraft in the simulation correspond to the actual delivery month of the aircraft. The

staggering of deliveries emulates the actual aircraft production and delivery process. Each

aircraft enters the simulation with zero values for all flight data. Flight data for each

aircraft are updated on a monthly basis.

16

At the end of a flying month, each aircraft is evaluated for suitability to continue

operating. If the evaluation is negative, the aircraft is removed from operational status

and inducted into an aviation depot. When depot space is available, the aircraft enters the

maintenance process. The amount of time an aircraft spends in the maintenance process is

based on the criteria on which it was inducted as is shown in Figure 6. When all

maintenance

Figure 6. Depot Induction Decision Criteria

actions are complete, the aircraft returns to operational status and the depot reclaims the

space resource. Turn-around time and maintenance man-hours are recorded after each

depot period. The simulation is complete at the end of the final flying month.

SDLM

New Wing

SDLM / Block Upgrade

New Wing / Block Upgrade

SDLM / New Wing

All

Operating
Status

Depot
Status

17

IV. SIMULATION DESCRIPTION

A. ASSUMPTIONS

The following assumptions were made during development of the model:

1) Aircraft returning from the depot were considered to be new. Therefore, an
aircraft had the same probability of failing a particular ASPA inspection
regardless of the Tour.

2) Turn-around time is based on the maintenance man-months required for all
maintenance activities and any queuing resulting from limited depot capacity.

B. INPUT

1. User Input to the Simulation

1) Simulation duration (months).

2) Desired depot induction process (ASPA or PDM).

3) Desired length of PDM cycle (months).

2. File Input to the Simulation

1) Aircraft groups (Lots) introduced at simulation times corresponding to actual
service entry dates.

2) Aircraft Bureau (ID) number and type of wing (7050 or 7075).

3) Parameters for probability distributions used in random generation
of monthly flight data.

4) Standard error used in the MMHRS regression model.

18

C. MODELED OBJECTS

The model was implemented in MODSIM II, a modular, object-oriented computer

simulation language. This section describes the most significant objects developed for the

simulation. Appendix F contains more detailed MODSIM II program code for the model.

1. Operations

One instance of the Operations Object, Operator, is called during the simulation to

serve as the manager of the entire aircraft inventory. The Operator is responsible for

invocation of the monthly Operations Method. During monthly operations, flight data are

updated and depot screening is performed for operational aircraft. A depot status

designation is assigned to aircraft that do not pass the screening process. The Operator is

also responsible for opening the aviation depot.

2. Aircraft

Each Aircraft in the simulation is passively represented by an instance of the

Aircraft Object. Randomly generated flight data are stored in designated fields of each

aircraft. Each field is updated on a monthly basis. Various methods were programmed in

the Aircraft Object for manipulation of data fields and use by other object entities in the

simulation.

3. Screen

The Screen Object provides two methods for screening aircraft for depot

induction. The ASPA-Screen Method makes depot induction determinations based on

information obtained from emulated material condition inspections performed on each

19

operational aircraft. The PDM-Screen Method evaluates each aircraft OSP. If an aircraft

has reached the established OSP limit, it is inducted into the depot. Both screen methods

assign job requirements which are stored in a record field of each aircraft object. Job

requirements, listed in Figure 6 of Chapter III, are determined by evaluation of flight data,

ASPA inspection results and service periods. Aircraft will not be inducted into the depot

for the sole purpose of upgrading the configuration.

4. Inspector

The Inspector is responsible for performing ASPA inspections on each operational

aircraft at the end of a flying month. Pass or Fail status is determined by comparing

randomly generated uniform values and EA-6B ASPA failure rates. Results are stored in a

data field of the aircraft being inspected. The Inspector is not used if the simulation is

being run using PDM.

5. Depot

Aircraft are inducted into the Depot Object and processed according to the job

requirements set during the depot screen. If the depot is full, aircraft wait in a queue until

space becomes available. Processing times and maintenance man-hour requirements are

based on actual EA-6B SDLM data from 1980 through 1995 [Ref 11]. Wing replacement

and configuration upgrade processing times are also considered in the total processing

time.

20

6. Depot Manager

The Depot Manager is responsible for determining annual depot capacity

requirements. If aircraft are being inducted by the ASPA process, the Depot Manager

records the total number of aircraft in each Tour/ASPA category at the beginning of each

year. The number of spaces available is based on the expected percentage of inspection

failures in each ASPA category. Failure rates are obtained from real EA-6B ASPA failure

data currently used in the Depot Requirements Document (DERD) [Ref 10]. If PDM is

the induction process being used on a simulation run, the Depot Manager bases depot

capacity on the number of aircraft that are within 12 months of their OSP.

D. GENERATION OF FLIGHT DATA

Randomly generated values for various flight data are generated on a monthly

basis. The values are based on the distributions assigned to each data field. The

distributions were determined from analysis of six months of recorded flight data for every

EA-6B in the Navy inventory. The descriptions and distributions of each flight data field

are contained in Appendix E.

E. GENERATION OF ASPA FAILURE RATES

The ASPA failure rates are obtained from a Markov model developed from actual

EA-6B ASPA inspection results from 1988 through 1995 [Ref 10]. The data contains

deferral and non-deferral rates according to the Tour and ASPA number of the aircraft

being inspected. The five states of the model are ASPA 1 through ASPA 5. The data are

aggregated by ASPA number across all tours. The transition probability matrix given in

21

Appendix D is based on the individual state probabilities. To determine the outcome of an

inspection, a random uniform number is generated and compared to an appropriate

inspection failure rate. Pass or Fail status is conferred according to the results of the

comparison.

F. GENERATION OF FATIGUE LIFE EXPENDED (FLE)

Each aircraft begins the simulation without any expended wing fatigue life. FLE is

calculated monthly, and incrementally applied to each aircraft. The incremental value is

based on the application of randomly generated flight data discussed in Section D and

shown in Equation 2.

() () ()FLE Landings CatsC G G C G G C G G C G C CLandings Cats= − + − + − + + +4 4 5 5 5 6 6 6 7 7 7 EQ (2)

Values for the coefficients, Ci, are based on the material type of the aircraft wing.

The Gi values reflect the number of times a particular “G” level is exceeded during flight.

Aircraft expending 100% of fatigue life will automatically be approved for a 600 flight

hour extension.

G. GENERATION OF MAINTENANCE MAN-HOURS (MMHRS)

Values for MMHRS were generated from a log-linear regression model, Equation

3, developed by regressing the natural log of actual MMHRS [Ref 11] on the times

between depot periods (IDT) for each aircraft. The log-linear design of the model

captures the increase in variability of MMHRS as IDT increases. IDT, generated by the

simulation, is measured from the time an aircraft leaves the depot after maintenance until it

returns for subsequent maintenance.

22

()ln MMHRS IDT= + ∗ +α β ε EQ (3)

A random error, ε, is generated from a normal distribution with mean 0 and variance equal

to the fitted value from the log-linear regression. MMHRS are converted to maintenance

man-months (MMTHS) by a factor based on the current expected maintenance man-hour

and turn-around time requirements for an EA-6B overhaul at NADEP Jacksonville,

Florida.

23

V. MODEL IMPLEMENTATION

A. BASELINE SIMULATION RUN

To compare the long run effects of implementing the ASPA and PDM processes

for aircraft depot induction, the simulation was run separately for each process using the

same input parameters given in Table 1.

Replications 150
Run Duration 30 Years
Number of Aircraft 109
PDM Cycle 54 Months

 Table 1. Baseline Input Parameters

Because of the random nature of simulation output, the number of replications is set to

ensure a minimum of 10% precision with 95% confidence. The 30 year run duration is an

estimate of the lifetime of an average EA-6B. The first lot of aircraft was delivered at t =

0 and the final lot entered service at t = 253, or the 21 year mark. The initial PDM cycle

of 54 months was chosen to corresponded to the current EA-6B OSP used in the ASPA

process. Flight data distributions and MMHRS requirements generation were consistent

for both processes.

B. SIMULATION OUTPUT AND ANALYSIS

An example of the simulation output is depicted in Table 2. The output reflects

the mean value and standard deviation of each measure of effectiveness (MOE), per

aircraft, over the length of a simulation run. Depot Time and Depot Periods represent the

24

total time spent in the depot and the total number of depot periods, per aircraft, over the

length of the simulation run. At the end of the baseline simulation run, there are 150

samples for each MOE.

Run µµMMHRS σσMMHRS µµTAT σσTAT µµDepotTime σσDepotTime µµDepotPeriods σσDepotPeriods

1 11029.70 3521.25 5.11 1.63 19.11 8.78 3.84 1.74
2 11368.76 3652.11 5.27 1.70 19.56 8.93 3.84 1.72
3 11334.47 3661.58 5.25 1.70 19.42 8.26 3.84 1.75
4 11043.21 3609.72 5.12 1.68 19.06 9.11 3.86 1.71
5 11426.57 3620.63 5.29 1.67 19.78 9.12 3.87 1.74
6 11428.34 4135.88 5.29 1.90 19.57 8.95 3.84 1.71
7 11294.50 3575.24 5.23 1.67 19.60 8.74 3.88 1.76
8 11241.59 3713.61 5.21 1.71 19.31 9.06 3.80 1.72
9 11348.21 3715.99 5.26 1.70 19.49 8.55 3.85 1.73
10 11188.28 3495.91 5.19 1.62 19.30 9.00 3.88 1.72

Table 2. Sample Simulation Output, 10 of 150 Runs

The estimates of the mean values for each MOE are depicted in Table 3. The last

column represents the 95% Paired-t Confidence Interval for the difference between

MOE’s of each process [Ref 13, p 586]. The confidence interval is an indication of the

magnitude of that difference. A negative sign in front of an interval indicates that the

ASPA value is less than the PDM value.

25

MOE µµ - ASPA µµ - PDM 95% CI

MMHRS 13561.41 11295.23 [1971.53 - 2560.84]
TAT (Mths) 6.3 5.2 [1.0 - 1.2]
Depot Time (Mths) 16.0 19.5 - [3.4 - 3.6]
Depot Periods 2.6 3.9 - [1.2 - 1.3]

Table 3. MOEs and Paired-t Confidence Interval test.

Review of the simulation output clearly indicates that over the length of the

simulation, the MMHRS and TAT requirements for PDM aircraft are less than those of

ASPA aircraft. Additionally, a comparison of coefficients of variation indicate that these

planning factors are more predictable for PDM than for ASPA. Equation 4 is a

comparison of the variability of MMHRS required for ASPA and PDM.

CPDM = 0.3272 < 0.4072 = CASPA EQ (4)

The output also indicates that the cumulative time an aircraft will spend in the

depot will be slightly greater for PDM than for ASPA. This result is intuitive because in

the long run, adherence to a PDM induction schedule will result in an increased number of

depot periods and a subsequent increase in total depot time.

C. SENSITIVITY ANALYSIS

Additional simulation runs were performed to test the sensitivity of the model to

changes in the values of significant input parameters. In addition to testing the feasibility

of the model, sensitivity runs also provide amplifying information about the behavior of

the MOE’s as conditions change. For this experiment, a 2k factorial design was used to

explore the effects of varying four parameters: simulation duration, standard error of the

26

MMHRS regression model (Equation 3), the PDM cycle and ASPA failure rates. Table 4

shows the range of values of the input parameters used in the sensitivity analysis.

Duration (Mths) MMHRS Std Err PDM Cycle (Mths) Failure Rate

High 480 0.6078 72 0.2
Low 240 0.0078 36 -0.2

Table 4. Sensitivity Analysis - Input Parameters

Results of the sensitivity analysis, Table 5, reveal that the model is extremely

sensitive to changes in the standard error of the MMHRS regression model. As the error

is increased, the MMHRS for both ASPA and PDM change significantly. Values for TAT

and cumulative depot time are similarly affected.

The analysis also shows that PDM results are significantly affected by the length of

the operational cycle (time between depot periods). The impact of IDT on the

performance measures provides valuable insight into the desirable lengths of aircraft

operational tours. Extended IDT’s will increase both labor requirements and the length of

depot periods. However, the magnitude of the PDM coefficients for both MMHRS and

TAT suggests that there is a potential trade-off between aircraft availability to the fleet

and a willingness to commit more maintenance resources to periodic overhauls. The

increase in MMHRS incurred by a moderate increase of the PDM cycle length may be

acceptable.

The effect of varying ASPA failure rates is also of interest. Although statistically

insignificant, the negative values of the coefficients suggest that an increase in the number

27

of ASPA failures results in a decrease in MMHRS, TAT and total depot time. This is

precisely the result expected from a purely objective ASPA program. If ASPA is working

properly, an aircraft will be inducted into the depot only when its condition warrants

failure, resulting in fewer MMHRS and shorter depot overhaul periods. However, the

results of the baseline simulation run, supported by the sensitivity analysis, suggest that

there is a certain degree of subjectivity and inconsistency inherent in the ASPA program.

MMHRS TAT Depot Time Depot Periods
ASPA PDM ASPA PDM ASPA PDM ASPA PDM

Intercept 16431.29 7926.99 7.90 3.80 -17.03 -6.62 -2.93 0.2136
Duration -9.1675 -2.88 -0.0049 -0.0018 0.0909 0.1137 0.0159 0.0224

MMHRS εε 3306.20 2917.34 1.4967 1.32 3.49 4.71 -0.0442 -0.1243

PDM Cycle 0.0000* 77.82 0.0000* 0.0372 0.0000* -0.2473 0.0000* -0.0717
Failure Rate -101.73* 0.0000* -0.1002* 0.0000* -0.1023* 0.0000* 0.0025* 0.0000

Table 5. Sensitivity Analysis (* Not statistically significant)

D. DISCUSSION

The baseline simulation output and results of the sensitivity analysis provide a

sound basis for the comparison of ASPA and PDM. The model output clearly shows the

advantages of PDM. Consistent depot inductions at smaller intervals result in fewer

MMHRS, shorter TAT and less variability of depot planning factors. However, the model

also suggests that to achieve the benefits of PDM, the cycle length must be chosen

carefully. If the cycle is too long, the results may be no better than ASPA. Consideration

must also be given to the increased cumulative depot time and the number of depot

periods that result from PDM. The model output reveals that consistent and manageable

28

MMHRS and TAT levels require more visits to the depot and a slight increase in the

cumulative time an aircraft spends in the depot.

29

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS AND RECOMMENDATIONS

The results discussed in Chapter V clearly indicate that a phased or programmed

depot maintenance process (PDM) is preferable to ASPA. Analysis of the model output

reveals that if an aircraft is inducted into the depot on a consistent and reasonable PDM

schedule, instead of by a subjective and inconsistent inspection procedure, maintenance

man-hour (MMHRS) requirements and turn-around time (TAT) will be lower. The

beneficial effects of reduced MMHRS and TAT include lower labor cost per aircraft

overhaul and increased aircraft availability to the fleet. Additionally, predictable PDM

planning factors will make aircraft inventory and depot management more tractable. A

more consistent depot process, resulting from a properly implemented PDM program, will

also reduce unplanned costs, or “over and aboves”.

The model output also shows that an appropriate depot cycle is imperative if PDM

is to be successful. If the PDM cycle is too long, MMHRS and TAT requirements will not

show improvement when compared to ASPA. If the PDM cycle is too short, the number

of depot periods per aircraft may increase excessively, resulting in reduced operational

availability.

Analysis of the model output presents strong evidence that, since its inception, the

inherent subjectivity of the ASPA program has resulted in years of unnecessarily high

depot labor requirements and decreased aircraft availability. The analysis offers further

evidence that PDM is a viable alternative to ASPA. It is recommended that consideration

30

be given to implementation of phased or programmed depot maintenance when defining

the maintenance concept for future Naval aircraft.

B. FURTHER RESEARCH

This model is capable of providing insight into the relationship between the time

between depot periods and MMHRS required for a depot overhaul. However, the model

as currently implemented does not quantitatively address the issue of unplanned costs

(over and aboves). Research on unplanned requirements and their ensuing effects on

MMHRS and TAT is recommended. The modular design of the simulation model in this

thesis will simplify incorporation of enhanced features developed by further research.

A second enhancement to the current model would be the explicit representation

of costs. In its present form, the model does not directly consider cost, although it does

provide insight into the fiscal implications of PDM and ASPA. Studies related to the

monetary cost of PDM are recommended to provide additional data and information to

decision makers and to further validate this model.

31

LIST OF REFERENCES

1. Bowman, Martin W., Encyclopedia of U.S. Military Airpower, Arms and Armour
Press, 1980.

2. Polmar, W., The Ships and Aircraft of the U.S. Fleet, 14th ed., Naval Institute
Press, 1987.

3. Ramsey, Robert G. and Legidakes, Leo J., An Analysis of the Impact on
Organizational and Depot Level Maintenance, Master’s Thesis, Naval
Postgraduate School, Monterey, CA, December 1994.

4. Department of the Navy Instruction (OPNAVINST 4730.10A), Aircraft Service
Period Adjustment, October 1991.

5. Department of the Navy Instruction (OPNAVINST 3110.11T), Policies and
Peacetime Planning Factors Governing the Use of Naval Aircraft, February 1993.

6. Rice, John A., Mathematical Statistics and Data Analysis, 2nd ed., Duxbury
Press, 1995.

7. MODSIM II The Language for Object-Oriented Programming, CACI Products
Company, January 1993.

8. Naval Air Systems (Air 4.3.3.2), EA-6B Aircraft Structural Appraisal of Fatigue
Effects (SAFE) Program Quartely Report, July 1995.

9. Locklear, G.D., Issues of Depot Maintenance: Changes for the Future, Research
Report, Industrial College of the Armed Forces, Washington, DC, April 1994.

10. Naval Aviation Depot Operations Center, ASPA Report - EA-6B Inspections,
FY88-95.

11. Naval Aviation Depot Operations Center, NADEP Production Performance
Report Database, May 1996.

12. Naval Aviation Depot, Jacksonville, FL, P-3C Cost and Turn Around Time (TAT)
Variance Report, June 1996.

13. Law, Averill M. and Kelton, David W., Simulation Modeling and Analysis,
McGraw-Hill Inc., 1991.

32

33

APPENDIX A.

The following graph represents the relationship between turn-around time (TAT)
and inter-depot time (IDT) for the EA-6B Prowler for the years 1988 through 1995.

EA-6B TAT vs IDT
1988-1995

0.0

10.0

20.0

30.0

40.0

50.0

0 1000 2000 3000 4000 5000 6000

IDT (Days)

T
A

T
 (

M
th

s)

TAT: µµ = 16.0 Mths / σσ = 8.3 Mths

34

35

APPENDIX B.

The following graph represents the variability of depot turn-around times (TAT)
for the EF-111 Raven for the years 1988 through 1996.

EF-111 TAT CY 88-96

0.0

5.0

10.0

15.0

20.0

0 10 20 30 40 50 60

PDM Event

T
A

T
 (

D
ay

s)

TAT: µµ = 9.9 Mths / σσ = 2.8 Mths

36

37

APPENDIX C.

The following is a detailed computation of the coefficients of variation for
maintenance man-hours (MMHRS) and turn-around time (TAT) for both the EA-6B and
the EF-111.

MMHRS

µµEA-6B = 23,496.28 Hrs
CEA-6B = σEA-6B / µEA-6B = 0.2223

σσEA-6B = 5,223.54 Hrs

µµEF-111 = 25,311.39 Hrs
CEA-6B = σEF-111 / µEF-111 = 0.0568

σσEF-111 = 1,438.86 Hrs

TAT

µµEA-6B = 17.2 Mths
CEA-6B = σEA-6B / µEA-6B = 0.5842

σσEA-6B = 10.1 Mths

µµEF-111 = 9.9 Mths
CEA-6B = σEF-111 / µEF-111 = 0.2812

σσEF-111 = 2.8 Mths

38

39

APPENDIX D.

The following is a Markov model developed to provide probabilities of passing
ASPA inspections. The data were obtained from actual EA-6B ASPA inspection results
from 1988 through 1995 [Ref 10]. ASPA 5 inspections and greater will result in failure.

pi = Probability that an aircraft will pass an ASPA inspection
i = ASPA State (1...4)

p1 = 0.9695
p2 = 0.8952
p3 = 0.8551
p4 = 0.8298

ASPA State Transition Matrix

ASPA 1 2 3 4 5
1 1-p1 p1 0 0 0
2 1-p2 0 -p2 0 0
3 1-p3 0 0 p3 0
4 1-p4 0 0 0 p4

5 1 0 0 0 0

40

41

APPENDIX E.

The flight data used in the simulation includes monthly statistics for each EA-6B in

the Navy inventory for the period of January through June, 1995.

Flight Data Distributions and Parameters

Flight Hours ~ Normal (34.5,19.5)
Landings ~ Weibull (40.7,1.14)
Catapults ~ Weibull (2.63,0.62)

Four g ~ Gamma (24.6,79.9)
Five g ~ Beta (0.24,3.79)
*Six g ~ Std Uniform / p = .1276

*Seven g ~ Std Uniform / p = .0469

* If Std Uniform is less than p, a “g” value of 1.0 is scored.

42

43

APPENDIX F.

This Appendix includes the MODSIM II computer code referenced in Section C of
Chapter V.

MAIN MODULE Prowler;

FROM Operations IMPORT OperationsObj;
FROM SimMod IMPORT StartSimulation, ResetSimTime, SimTime;
FROM Stats IMPORT StatsObj, CumStatsObj, YearlyStatsObj;

VAR
 RunNumber, PDMCycle, NumberOfRuns, Process : INTEGER;
 RunLength : REAL;
 FileName : STRING;
 Operator : OperationsObj;
 CumStatRecord : CumStatsObj;
 StatRecord: StatsObj;
 YearlyStatRecord : YearlyStatsObj;
BEGIN
 OUTPUT("How many reps do you wish to run?");
 INPUT(NumberOfRuns);
 OUTPUT("How many months do you wish each run of the simulation to last?");
 INPUT(RunLength);
 OUTPUT("Simulate ASPA or PDM (1 = ASPA, 2 = PDM)");
 INPUT(Process);
 OUTPUT("Enter the length of the PDM cycle in months (0 if running ASPA)");
 INPUT(PDMCycle);
 OUTPUT("Enter the name of the output file.");
 INPUT(FileName);
 RunNumber := 1;
 NEW(Operator);
 ASK Operator TO PrepareReports(Process,FileName);
 WHILE NumberOfRuns > 0
 NEW(StatRecord);
 NEW(CumStatRecord);
 NEW(YearlyStatRecord);
 ResetSimTime(0.0);
 TELL Operator TO MonthlyOps(FileName,RunNumber,PDMCycle,RunLength,
 Process,StatRecord,CumStatRecord,YearlyStatRecord);
 StartSimulation;
 DEC(NumberOfRuns);
 INC(RunNumber);
 DISPOSE(StatRecord);
 DISPOSE(CumStatRecord);
 DISPOSE(YearlyStatRecord);
 END WHILE;
 DISPOSE(Operator);
END MODULE.

44

DEFINITION MODULE Aircraft;

FROM Depot IMPORT DepotObj;
FROM NumberMill IMPORT FltDataGeneratorObj;
FROM Stats IMPORT StatsObj, YearlyStatsObj;

TYPE
 JobOrderType = (Rework,Rewing,ReworkRewing,ReworkUpgrade,

(RewingUpgrade,ReworkRewingUpgrade);

JobListRecType = RECORD
 TaskName : STRING;
 ExecuteTask,
 TaskRecord : BOOLEAN;
 END RECORD;

 JobListArrayType = ARRAY JobOrderType OF JobListRecType;

 DepotStatsType = RECORD
 NumberOfVisits,
 TimeInDepot,LaborMonths,LaborHours,TaskCost,
 CumTimeInDepot,CumLaborMonths,CumLaborHours,CumCost,
 IDT : REAL;
 END RECORD;

AircraftObj = OBJECT
 Status : STRING;
 Buno,
 Lndgs,CumLndgs,
 Cats,CumCats,
 FourG,CumFourG,
 FiveG,CumFiveG,
 SixG,CumSixG,
 SevenG,CumSevenG,
 WingType,
 Tour, ASPA,
 OSP,
 PED,
 Block,
 PDMCycle : INTEGER;
 AircraftAge,Hrs,CumHrs,FLE,ExtHrs,UpdateFactor,DepotExitTime : REAL;
 OSPLimit,PEDLimit,FLELimit,EXTLimit,NeedBlock : BOOLEAN;
 DepotStats : DepotStatsType;
 JobList : JobListArrayType;
 ASK METHOD ObjInit;
 ASK METHOD CheckStatus() : STRING;
 ASK METHOD ChangeStatus(IN NewStatus : STRING);
 ASK METHOD GetAircraftAge() : REAL;
 ASK METHOD GetASPA() : INTEGER;
 ASK METHOD GetBlock() : INTEGER;
 ASK METHOD GetBuno() : INTEGER;
 ASK METHOD GetCumHrs() : REAL;
 ASK METHOD GetCumTimeInDepot() : REAL;
 ASK METHOD GetCumLaborMonths() : REAL;

45

 ASK METHOD GetCumLaborHours() : REAL;
 ASK METHOD GetExecuteTask(IN JobNumber : JobOrderType) : BOOLEAN;
 ASK METHOD GetExtHrs() : REAL;
 ASK METHOD GetEXTLimit() : BOOLEAN;
 ASK METHOD GetFLE() : REAL;
 ASK METHOD GetFLELimit() : BOOLEAN;
 ASK METHOD GetIDT() : REAL;
 ASK METHOD GetLaborMonths() : REAL;
 ASK METHOD GetLaborHours() : REAL;
 ASK METHOD GetNeedBlock() : BOOLEAN;
 ASK METHOD GetNumVisits() : REAL;
 ASK METHOD GetOSP() : INTEGER;
 ASK METHOD GetOSPLimit() : BOOLEAN;
 ASK METHOD GetPED() : INTEGER;
 ASK METHOD GetPEDLimit() : BOOLEAN;
 ASK METHOD GetTaskCost() : REAL;
 ASK METHOD GetTaskRecord(IN JobNumber : JobOrderType) : STRING;
 ASK METHOD GetTaskName(IN JobNumber : JobOrderType) : STRING;
 ASK METHOD GetTimeInDepot() : REAL;
 ASK METHOD GetTour() : INTEGER;
 ASK METHOD GetWingType() : INTEGER;
 ASK METHOD InitialData(IN DataString : STRING; IN Process : INTEGER);
 ASK METHOD InitialDepotFactors;
 ASK METHOD InitialDepotStats;
 ASK METHOD InitialPDMCycle(IN NumberOfMonths : INTEGER);
 ASK METHOD IncrementASPA;
 ASK METHOD IncrementTour;
 ASK METHOD ReInitializeASPA;
 ASK METHOD ReInitializePDM;
 ASK METHOD SetDepotStats(IN TAT, MMHRS, Cost : REAL);
 ASK METHOD SetExecuteTask(IN Condtion : BOOLEAN; IN JobNumber : JobOrderType);
 ASK METHOD SetPED;
 ASK METHOD SetTaskRecord(IN RecordCondition : BOOLEAN; IN JobNumber : JobOrderType);
 ASK METHOD SetTATs(IN TAT : REAL);
 ASK METHOD SetUpdateFactor;
 ASK METHOD UpdateAircraftAge;
 ASK METHOD UpdateCumData;
 ASK METHOD UpdateData(IN Gen : FltDataGeneratorObj);
 ASK METHOD UpdateDepotFactors;
 ASK METHOD UpdateDepotExitTime(IN ExitTime : REAL);
 ASK METHOD UpdateDepotStats;
 ASK METHOD UpdateFLE;
 ASK METHOD UpdateIDT(IN EntryTime : REAL);
 ASK METHOD UpdatePeriods;
 ASK METHOD UpdateStats(IN StatRecord : StatsObj; IN YearlyStatRecord : YearlyStatsObj);
 TELL METHOD GoToDepot(IN RunNumber, InductionProcess : INTEGER;

 IN Generator : FltDataGeneratorObj;
 IN Depot : DepotObj; IN StatRecord : StatsObj;

 IN YearlyStatRecord : YearlyStatsObj);
END OBJECT;

END MODULE.

46

IMPLEMENTATION MODULE Aircraft;

FROM DataFinder IMPORT DataFinderObj;
FROM DataManager IMPORT DataManagerObj;
FROM Depot IMPORT DepotObj;
FROM IOMod IMPORT StreamObj, ReadKey;
FROM NumberMill IMPORT FltDataGeneratorObj;
FROM SimMod IMPORT SimTime;
FROM Stats IMPORT StatsObj, YearlyStatsObj;

OBJECT AircraftObj;
 ASK METHOD ObjInit;
 VAR
 DataFinder : StreamObj;
 ProcessTime : REAL;
 JobNumber : JobOrderType;
 BEGIN
 NEW(DataFinder);
 NEW(JobList,MIN(JobOrderType)..MAX(JobOrderType));
 FOR JobNumber := MIN(JobOrderType) TO MAX(JobOrderType)
 NEW(JobList[JobNumber]);
 CASE ORD(JobNumber)
 WHEN 0:
 JobList[JobNumber].TaskName := "Rework";
 WHEN 1:
 JobList[JobNumber].TaskName := "Rewing";
 WHEN 2:
 JobList[JobNumber].TaskName := "ReworkRewing";
 WHEN 3:
 JobList[JobNumber].TaskName := "ReworkUpgrade";
 WHEN 4:
 JobList[JobNumber].TaskName := "RewingRewing";
 WHEN 5:
 JobList[JobNumber].TaskName := "ReworkRewingUpgrade";
 OTHERWISE
 JobList[JobNumber].TaskName := "NA";
 END CASE;
 JobList[JobNumber].ExecuteTask := FALSE;
 JobList[JobNumber].TaskRecord := FALSE;
 END FOR;
 END METHOD;

 ASK METHOD CheckStatus() : STRING;
 BEGIN
 RETURN Status;
 END METHOD;

 ASK METHOD ChangeStatus(IN NewStatus : STRING);
 BEGIN
 Status := NewStatus;
 END METHOD;

47

 ASK METHOD GetAircraftAge() : REAL;
 BEGIN
 RETURN AircraftAge/12.0;
 END METHOD;

 ASK METHOD GetASPA() : INTEGER;
 BEGIN
 RETURN ASPA;
 END METHOD;

 ASK METHOD GetBlock() : INTEGER;
 BEGIN
 RETURN Block;
 END METHOD;

 ASK METHOD GetBuno() : INTEGER;
 BEGIN
 RETURN Buno;
 END METHOD;

 ASK METHOD GetCumHrs() : REAL;
 BEGIN
 RETURN CumHrs;
 END METHOD;

 ASK METHOD GetCumTimeInDepot() : REAL;
 BEGIN
 RETURN DepotStats.CumTimeInDepot;
 END METHOD;

 ASK METHOD GetCumLaborMonths() : REAL;
 BEGIN
 RETURN DepotStats.CumLaborMonths;
 END METHOD;

 ASK METHOD GetCumLaborHours() : REAL;
 BEGIN
 RETURN DepotStats.CumLaborHours;
 END METHOD;

 ASK METHOD GetExecuteTask(IN JobNumber : JobOrderType) : BOOLEAN;
 BEGIN
 RETURN JobList[JobNumber].ExecuteTask;
 END METHOD;

 ASK METHOD GetExtHrs() : REAL;
 BEGIN
 RETURN ExtHrs;
 END METHOD;

 ASK METHOD GetEXTLimit() : BOOLEAN;
 BEGIN
 RETURN EXTLimit;
 END METHOD;

48

 ASK METHOD GetFLE() : REAL;
 BEGIN
 RETURN FLE;
 END METHOD;

 ASK METHOD GetFLELimit() : BOOLEAN;
 BEGIN
 RETURN FLELimit;
 END METHOD;

 ASK METHOD GetIDT() : REAL;
 BEGIN
 RETURN DepotStats.IDT;
 END METHOD;

 ASK METHOD GetLaborMonths() : REAL;
 BEGIN
 RETURN DepotStats.LaborMonths;
 END METHOD;

 ASK METHOD GetLaborHours() : REAL;
 BEGIN
 RETURN DepotStats.LaborHours;
 END METHOD;

 ASK METHOD GetNeedBlock() : BOOLEAN;
 BEGIN
 RETURN NeedBlock;
 END METHOD;

 ASK METHOD GetNumVisits() : REAL;
 BEGIN
 RETURN DepotStats.NumberOfVisits;
 END METHOD;

 ASK METHOD GetOSP() : INTEGER;
 BEGIN
 RETURN OSP;
 END METHOD;

 ASK METHOD GetOSPLimit() : BOOLEAN;
 BEGIN
 RETURN OSPLimit;
 END METHOD;

 ASK METHOD GetPED() : INTEGER;
 BEGIN
 RETURN PED;
 END METHOD;

 ASK METHOD GetPEDLimit() : BOOLEAN;
 BEGIN
 RETURN PEDLimit;
 END METHOD;

49

 ASK METHOD GetTaskCost() : REAL;
 BEGIN
 RETURN DepotStats.TaskCost;
 END METHOD;

 ASK METHOD GetTaskName(IN JobNumber : JobOrderType) : STRING;
 BEGIN
 RETURN JobList[JobNumber].TaskName;
 END METHOD;

 ASK METHOD GetTaskRecord(IN JobNumber : JobOrderType) : STRING;
 BEGIN
 IF JobList[JobNumber].TaskRecord
 RETURN JobList[JobNumber].TaskName;
 ELSE
 RETURN "NA";
 END IF;
 END METHOD;

 ASK METHOD GetTimeInDepot() : REAL;
 BEGIN
 RETURN DepotStats.TimeInDepot;
 END METHOD;

 ASK METHOD GetTour() : INTEGER;
 BEGIN
 RETURN Tour;
 END METHOD;

 ASK METHOD GetWingType() : INTEGER;
 BEGIN
 RETURN WingType;
 END METHOD;

 ASK METHOD InitialData(IN DataString : STRING; IN Process : INTEGER);
 CONST
 ProcessASPA = 1;
 VAR
 BunoString, HrsString, LndgsString, CatsString : STRING;
 DataReader : DataFinderObj;
 BEGIN
 NEW(DataReader);
 AircraftAge := 0.0;
 Buno := ASK DataReader TO GetBuno(DataString);
 WingType := ASK DataReader TO GetWingType(DataString);
 Block := ASK DataReader TO GetBlock();
 Status := ASK DataReader GetStatus();
 Hrs := ASK DataReader GetHrs();
 Lndgs := ASK DataReader GetLndgs();
 Cats := ASK DataReader GetCats();
 FourG := ASK DataReader GetFourG();
 FiveG := ASK DataReader GetFiveG();
 SixG := ASK DataReader GetSixG();
 SevenG := ASK DataReader GetSevenG();

50

 FLE := ASK DataReader GetFLE();
 ExtHrs := ASK DataReader GetExtHrs();
 Tour := ASK DataReader GetTour();
 ASPA := ASK DataReader GetASPA();
 PED := ASK DataReader GetPED();
 IF Process = ProcessASPA
 OSP := ASK DataReader GetOSP();
 ELSE
 OSP := PDMCycle;
 END IF;
 ASK SELF TO InitialDepotFactors;
 NEW(DepotStats);
 ASK SELF TO InitialDepotStats;
 UpdateFactor := 1.0;
 ASK SELF TO UpdateCumData;
 DISPOSE(DataReader);
 END METHOD;

 ASK METHOD InitialDepotFactors;
 BEGIN
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 IF Block <> 3
 NeedBlock := TRUE;
 ELSE
 NeedBlock := FALSE;
 END IF;
 END METHOD;

 ASK METHOD InitialDepotStats;
 BEGIN
 DepotStats.NumberOfVisits := 0.0;
 DepotStats.TimeInDepot := 0.0;
 DepotStats.LaborMonths := 0.0;
 DepotStats.LaborHours := 0.0;
 DepotStats.CumTimeInDepot := 0.0;
 DepotStats.CumLaborMonths := 0.0;
 DepotStats.CumLaborHours := 0.0;
 DepotStats.IDT := 0.0;
 DepotExitTime := SimTime();
 END METHOD;

 ASK METHOD InitialPDMCycle(IN NumberOfMonths : INTEGER);
 BEGIN
 PDMCycle := NumberOfMonths;
 END METHOD;

 ASK METHOD IncrementASPA;
 BEGIN
 INC(ASPA);
 END METHOD;

51

 ASK METHOD IncrementTour;
 BEGIN
 INC(Tour);
 END METHOD;

 ASK METHOD ReInitializeASPA;
 CONST
 Op = "Op";
 BEGIN
 ASK SELF TO ChangeStatus(Op);
 IF JobList[Rework].TaskRecord
 ASK SELF TO IncrementTour;
 ASPA := 1;
 OSP := 36;
 PED := 36;
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 END IF;
 IF JobList[Rewing].TaskRecord
 FLE := 0.0;
 ExtHrs := 0.0;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 END IF;
 IF JobList[ReworkUpgrade].TaskRecord
 ASK SELF TO IncrementTour;
 ASPA := 1;
 OSP := 36;
 PED := 36;
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 Block := 3;
 NeedBlock := FALSE;
 END IF;
 IF JobList[RewingUpgrade].TaskRecord
 FLE := 0.0;
 ExtHrs := 0.0;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 Block := 3;
 NeedBlock := FALSE;
 END IF;
 IF JobList[ReworkRewing].TaskRecord
 ASK SELF TO IncrementTour;
 ASPA := 1;
 OSP := 36;
 PED := 36;
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 FLE := 0.0;
 ExtHrs := 0.0;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 END IF;

52

 IF JobList[ReworkRewingUpgrade].TaskRecord
 ASK SELF TO IncrementTour;
 ASPA := 1;
 OSP := 36;
 PED := 36;
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 FLE := 0.0;
 ExtHrs := 0.0;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 Block := 3;
 NeedBlock := FALSE;
 END IF;
 END METHOD;

 ASK METHOD ReInitializePDM;
 CONST
 Op = "Op";
 BEGIN
 ASK SELF TO ChangeStatus(Op);
 IF JobList[Rework].TaskRecord
 ASK SELF TO IncrementTour;
 ASPA := 0;
 OSP := PDMCycle;
 PED := PDMCycle;
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 END IF;
 IF JobList[Rewing].TaskRecord
 FLE := 0.0;
 ExtHrs := 0.0;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 END IF;
 IF JobList[ReworkUpgrade].TaskRecord
 ASK SELF TO IncrementTour;
 ASPA := 0;
 OSP := PDMCycle;
 PED := PDMCycle;
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 Block := 3;
 NeedBlock := FALSE;
 END IF;
 IF JobList[RewingUpgrade].TaskRecord
 FLE := 0.0;
 ExtHrs := 0.0;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 Block := 3;
 NeedBlock := FALSE;
 END IF;
 IF JobList[ReworkRewing].TaskRecord

53

 ASK SELF TO IncrementTour;
 ASPA := 0;
 OSP := PDMCycle;
 PED := PDMCycle;
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 FLE := 0.0;
 ExtHrs := 0.0;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 END IF;
 IF JobList[ReworkRewingUpgrade].TaskRecord
 ASK SELF TO IncrementTour;
 ASPA := 0;
 OSP := PDMCycle;
 PED := PDMCycle;
 OSPLimit := FALSE;
 PEDLimit := FALSE;
 FLE := 0.0;
 ExtHrs := 0.0;
 FLELimit := FALSE;
 EXTLimit := FALSE;
 Block := 3;
 NeedBlock := FALSE;
 END IF;
 END METHOD;

 ASK METHOD SetDepotStats(IN MMTHS, MMHRS, Cost : REAL);
 BEGIN
 DepotStats.LaborMonths := MMTHS;
 DepotStats.LaborHours := MMHRS;
 DepotStats.TaskCost := Cost;
 DepotStats.CumLaborMonths := DepotStats.CumLaborMonths + MMTHS;
 DepotStats.CumLaborHours := DepotStats.CumLaborHours + MMHRS;
 DepotStats.CumCost := DepotStats.CumCost + Cost;
 DepotStats.NumberOfVisits := DepotStats.NumberOfVisits + 1.0;;
 END METHOD;

 ASK METHOD SetExecuteTask(IN TaskCondition : BOOLEAN; IN JobNumber : JobOrderType);
 BEGIN
 JobList[JobNumber].ExecuteTask := TaskCondition;
 END METHOD;

 ASK METHOD SetPED;
 BEGIN
 PED := 12;
 PEDLimit := FALSE;
 END METHOD;

 ASK METHOD SetTaskRecord(IN RecordCondition : BOOLEAN; IN JobNumber : JobOrderType);
 BEGIN
 JobList[JobNumber].TaskRecord := RecordCondition;
 END METHOD;

54

 ASK METHOD SetTATs(IN TAT : REAL);
 BEGIN
 DepotStats.TimeInDepot := TAT;
 DepotStats.CumTimeInDepot := DepotStats.CumTimeInDepot + TAT;
 END METHOD;

 ASK METHOD SetUpdateFactor;
 VAR
 ReInitTime : REAL;
 WholeReInitTime : INTEGER;
 BEGIN
 ReInitTime := SimTime();
 WholeReInitTime := TRUNC(ReInitTime);
 UpdateFactor := 1.0 -(ReInitTime - FLOAT(WholeReInitTime));
 END METHOD;

 ASK METHOD UpdateAircraftAge;
 BEGIN
 AircraftAge := AircraftAge + 1.0;
 END METHOD;

 ASK METHOD UpdateCumData;
 BEGIN
 CumHrs := CumHrs + Hrs;
 CumLndgs := CumLndgs + Lndgs;
 CumCats := CumCats + Cats;
 CumFourG := CumFourG + FourG;
 CumFiveG := CumFiveG + FiveG;
 CumSixG := CumSixG + SixG;
 CumSevenG := CumSevenG + SevenG;
 END METHOD;

 ASK METHOD UpdateData(IN Gen : FltDataGeneratorObj);
 VAR
 Test : REAL;
 Continue : CHAR;
 TempLndgs, TempCats, TempFourG, TempFiveG, TempSixG, TempSevenG : REAL;
 BEGIN
 IF Status <> "Op"
 OUTPUT("Aircraft in Depot Status is still flying!");
 ASK SELF TO MonthlyReport;
 OUTPUT("Hit RETURN to continue");
 Continue := ReadKey;
 END IF;
 Hrs := UpdateFactor*ASK Gen NewHrs;
 TempLndgs := UpdateFactor*(ASK Gen NewLndgs);
 Lndgs := TRUNC(TempLndgs);
 TempCats := UpdateFactor*(ASK Gen NewCats);
 Cats := TRUNC(TempCats);
 TempFourG := UpdateFactor*(ASK Gen NewFourG);
 FourG := TRUNC(TempFourG);
 TempFiveG := UpdateFactor*(ASK Gen NewFiveG);
 FiveG := TRUNC(TempFiveG);
 TempSixG := UpdateFactor*(ASK Gen NewSixG);

55

 SixG := TRUNC(TempSixG);
 TempSevenG := UpdateFactor*(ASK Gen NewSevenG);
 SevenG := TRUNC(TempSevenG);
 ASK SELF TO UpdateCumData;
 ASK SELF TO UpdateFLE;
 IF FLELimit
 ExtHrs := UpdateFactor*(ExtHrs + Hrs);
 END IF;
 ASK SELF TO UpdatePeriods;
 ASK SELF TO UpdateDepotFactors;
 UpdateFactor := 1.0;
 END METHOD;

 ASK METHOD UpdateDepotExitTime(IN ExitTime : REAL);
 BEGIN
 DepotExitTime := ExitTime;
 END METHOD;

 ASK METHOD UpdateDepotFactors;
 BEGIN
 IF (OSP = 0)
 OSPLimit := TRUE;
 END IF;
 IF (PED = 0)
 PEDLimit := TRUE;
 END IF;
 IF (FLE > 90.0)
 FLELimit := TRUE;
 END IF;
 IF (ExtHrs > 600.0)
 EXTLimit := TRUE;
 END IF;
 IF Block <> 3
 NeedBlock := TRUE;
 END IF;
 END METHOD;

 ASK METHOD UpdateDepotStats;
 BEGIN
 DepotStats.CumLaborMonths := DepotStats.CumLaborMonths + DepotStats.LaborMonths;
 DepotStats.CumLaborHours := DepotStats.CumLaborHours + DepotStats.LaborHours;
 DepotStats.CumCost := DepotStats.CumCost + DepotStats.TaskCost;
 END METHOD;

 ASK METHOD UpdateFLE;
 VAR
 C4,C5,C6,C7,CL,CC : REAL;
 BEGIN
 IF WingType = 7050
 C4 := 0.020051;
 C5 := 0.05863;
 C6 := 0.145304;
 C7 := 0.288043;
 CL := 0.001894;

56

 CC := 0.005808;
 END IF;
 IF WingType = 7075
 C4 := 0.006884;
 C5 := 0.043298;
 C6 := 0.196077;
 C7 := 0.282965;
 CL := 0.00098;
 CC := 0.001562;
 END IF;
 FLE := FLE + UpdateFactor*(C4*FLOAT(FourG-FiveG)+C5*FLOAT(FiveG-SixG)

 +C6*FLOAT(SixG-SevenG)+(C7*FLOAT(SevenG)) +(CL*FLOAT(Lndgs))
 +(CC*FLOAT(Cats)));

 END METHOD;

 ASK METHOD UpdateIDT(IN EntryTime : REAL);
 BEGIN
 DepotStats.IDT := EntryTime - DepotExitTime;
 END METHOD;

 ASK METHOD UpdatePeriods;
 BEGIN
 DEC(OSP);
 DEC(PED);
 END METHOD;

 ASK METHOD UpdateStats(IN StatRecord : StatsObj; IN YearlyStatRecord : YearlyStatsObj);
 BEGIN
 ASK StatRecord TO GetSample((ASK SELF TO GetTimeInDepot),

 (ASK SELF TO GetLaborMonths),
 (ASK SELF TO GetLaborHours));
 ASK YearlyStatRecord TO GetSample(ASK SELF TO GetLaborHours);
 END METHOD;

 TELL METHOD GoToDepot(IN RunNumber, InductionProcess : INTEGER;
 IN Generator : FltDataGeneratorObj;

 IN Depot : DepotObj; IN StatRecord : StatsObj;
 IN YearlyStatRecord : YearlyStatsObj);

 CONST
 Op = "Op";
 ProcessASPA = 1;
 VAR
 Manager : DataManagerObj;
 EntryTime, TurnAroundTime : REAL;
 Continue : CHAR;
 BEGIN
 NEW(Manager);
 ASK SELF TO UpdateIDT(SimTime());
 EntryTime := SimTime();
 WAIT FOR Depot TO Give(SELF,1);
 END WAIT;
 WAIT FOR Depot TO ProcessAircraft(SELF);
 END WAIT;
 ASK Depot TO TakeBack(SELF,1);

57

 TurnAroundTime := SimTime() - EntryTime;
 ASK SELF TO SetTATs(TurnAroundTime);
 ASK SELF TO UpdateStats(StatRecord,YearlyStatRecord);
 ASK SELF TO ChangeStatus(Op);
 ASK SELF TO SetUpdateFactor;
 ASK Generator TO GenUpdateData;
 ASK SELF TO UpdateData(Generator);
 IF InductionProcess = ProcessASPA
 ASK SELF TO ReInitializeASPA;
 ELSE
 ASK SELF TO ReInitializePDM;
 END IF;
 ASK SELF TO UpdateDepotExitTime(SimTime());
 DISPOSE(Manager);
 END METHOD;

END OBJECT;

END MODULE.

58

DEFINITION MODULE Operations;

FROM DataManager IMPORT DataManagerObj;
FROM Depot IMPORT DepotObj;
FROM GrpMod IMPORT StatQueueObj;
FROM NumberMill IMPORT FltDataGeneratorObj, JobDataGeneratorObj;
FROM Screen IMPORT ScreenObj;
FROM Stats IMPORT StatsObj, CumStatsObj, YearlyStatsObj;

TYPE
 OperationsObj = OBJECT
 AllAircraft : StatQueueObj;
 DepotOne : DepotObj;
 FlightDataGenerator : FltDataGeneratorObj;
 InspectionTeam : ScreenObj;
 JobGenerator : JobDataGeneratorObj;
 Manager : DataManagerObj;
 ASK METHOD ObjInit;
 ASK METHOD PrepareReports(IN Process : INTEGER; IN FileName : STRING);
 TELL METHOD MonthlyOps(IN FileName : STRING; IN RunNumber, PDMCycle : INTEGER;

 IN RunLength : REAL; IN Process : INTEGER;
 IN StatRecord : StatsObj; IN CumStatRecord : CumStatsObj;
 IN YearlyStatRecord : YearlyStatsObj);

 ASK METHOD YearMark(IN Time : REAL) : BOOLEAN;
 ASK METHOD ObjTerminate;
END OBJECT;

END MODULE.

59

IMPLEMENTATION MODULE Operations;

FROM Aircraft IMPORT AircraftObj;
FROM DataManager IMPORT DataManagerObj;
FROM Depot IMPORT DepotManagerObj, DepotObj;
FROM IOMod IMPORT StreamObj, FileUseType(Append);
FROM NumberMill IMPORT FltDataGeneratorObj, JobDataGeneratorObj;
FROM Screen IMPORT ScreenObj;
FROM SimMod IMPORT SimTime;
FROM Stats IMPORT StatsObj, CumStatsObj, YearlyStatsObj;

OBJECT OperationsObj;
 ASK METHOD ObjInit;
 BEGIN
 NEW(Manager);
 NEW(FlightDataGenerator);
 NEW(InspectionTeam);
 NEW(JobGenerator);
 END METHOD;

 ASK METHOD PrepareReports(IN Process : INTEGER; IN FileName : STRING);
 BEGIN
 ASK Manager TO InitializeReports(Process,FileName);
 END METHOD;

 TELL METHOD MonthlyOps(IN FileName : STRING; IN RunNumber, PDMCycle : INTEGER;
 IN RunLength : REAL; IN Process : INTEGER;
 IN StatRecord : StatsObj; IN CumStatRecord : CumStatsObj;
 IN YearlyStatRecord : YearlyStatsObj);

 CONST
 Op = "Op";
 Depot = "Depot";
 ASPA = 1;
 PDM = 2;
 VAR
 Lot : REAL;
 SendToDepot : BOOLEAN;
 LotNumber : STRING;
 Prowler : AircraftObj;
 DataWriter : StreamObj;
 BEGIN
 NEW(AllAircraft);
 NEW(DepotOne);
 ASK DepotOne TO SetJobDataGen(JobGenerator);
 WHILE SimTime() < RunLength;
 WAIT DURATION 1.0
 IF (ASK Manager TO GetDeliveryTime(SimTime(),LotNumber));
 ASK Manager TO InitializeAircraft(AllAircraft,LotNumber,Process,PDMCycle);
 END IF;
 IF (SimTime() = 1.0) OR (ASK SELF TO YearMark(SimTime()))
 WAIT FOR DepotOne TO UpdateDepotAvailability(AllAircraft,Process);
 END WAIT;
 END IF;

60

 FOREACH Prowler IN AllAircraft
 ASK Prowler TO UpdateAircraftAge;
 IF (ASK Prowler TO CheckStatus) = Op
 ASK FlightDataGenerator TO GenUpdateData;
 ASK Prowler TO UpdateData(FlightDataGenerator);
 ASK InspectionTeam TO DepotScreen(Prowler,Process,SendToDepot);
 IF SendToDepot
 ASK Prowler TO ChangeStatus(Depot);
 TELL Prowler TO GoToDepot(RunNumber,Process,FlightDataGenerator,DepotOne,
 StatRecord,YearlyStatRecord);
 END IF;
 END IF;
 END FOREACH;
 IF ASK SELF TO YearMark(SimTime())
 ASK YearlyStatRecord TO GetYearlySample;
 END IF;
 END WAIT;
 END WHILE;
 FOREACH Prowler IN AllAircraft
 ASK CumStatRecord TO GetCumSample(Prowler);
 END FOREACH;
 ASK Manager TO StatReport(FileName,RunNumber,Process,
 (ASK StatRecord TO MeanTAT),(ASK StatRecord TO StdDevTAT),
 (ASK StatRecord TO MeanMMTHS),(ASK StatRecord TO StdDevTAT),
 (ASK StatRecord TO MeanMMHRS),(ASK StatRecord TO StdDevMMHRS),
 (ASK CumStatRecord TO MeanCumTime),

 (ASK CumStatRecord TO StdDevCumTime),
 (ASK CumStatRecord TO MeanVisits),(ASK CumStatRecord TO StdDevVisits),
 (ASK StatRecord TO MeanMMHRSYr(RunLength/12.0)),
 (ASK YearlyStatRecord TO GetYearlyMeanMMHRS),
 (ASK YearlyStatRecord TO GetYearlyStdDevMMHRS),
 (ASK YearlyStatRecord TO GetYearlyMeanVisits),
 (ASK YearlyStatRecord TO GetYearlyStdDevVisits));
 END METHOD;

 ASK METHOD YearMark(IN Time : REAL) : BOOLEAN;
 VAR
 TempTime : INTEGER;
 BEGIN
 TempTime := TRUNC(Time/12.0);
 IF (FLOAT(TempTime) - Time/12.0) = 0.0
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;
 END METHOD;

 ASK METHOD ObjTerminate;
 BEGIN
 DISPOSE(Manager);
 END METHOD;

END OBJECT;
END MODULE.

61

DEFINITION MODULE Screen;

FROM Aircraft IMPORT AircraftObj;
FROM RandMod IMPORT RandomObj;

TYPE
 ScreenObj = OBJECT;
 ASPATeam : InspectorObj;
 ASK METHOD ObjInit;
 ASK METHOD DepotScreen(IN Prowler : AircraftObj; IN Process : INTEGER;

 OUT SendDepot : BOOLEAN);
 ASK METHOD DepotScreenASPA(IN Prowler : AircraftObj;OUT SendToDepot : BOOLEAN);
 ASK METHOD DepotScreenPDM(IN Prowler : AircraftObj;OUT SendToDepot : BOOLEAN);
 ASK METHOD GetWorkOrder(IN Jet : AircraftObj; IN Rework,Rewing,Upgrade : BOOLEAN) :

 INTEGER;
 END OBJECT;

 InspectorObj = OBJECT;
 RandScore : RandomObj;
 ASK METHOD ObjInit;
 ASK METHOD InspectASPA(IN ASPANumber : INTEGER;OUT Pass : BOOLEAN);
 END OBJECT;

END MODULE.

62

IMPLEMENTATION MODULE Screen;

FROM Aircraft IMPORT AircraftObj,JobOrderType;
FROM IOMod IMPORT ReadKey;
FROM RandMod IMPORT RandomObj, FetchSeed;

OBJECT ScreenObj;
 ASK METHOD ObjInit;
 BEGIN
 NEW(ASPATeam);
 END METHOD;

 ASK METHOD DepotScreen(IN Prowler : AircraftObj; IN Process : INTEGER; OUT SendDepot :
 BOOLEAN);

 CONST
 ASPA = 1;
 PDM = 2;
 BEGIN
 IF Process = ASPA
 ASK SELF TO DepotScreenASPA(Prowler,SendDepot);
 ELSE
 ASK SELF TO DepotScreenPDM(Prowler,SendDepot);
 END IF;
 END METHOD;

 ASK METHOD DepotScreenASPA(IN Prowler : AircraftObj;OUT SendToDepot : BOOLEAN);
 VAR
 JobNumber : JobOrderType;
 ASPANumber, OrderNumber : INTEGER;
 PassASPA, TaskCondition, Rework, Rewing, Upgrade : BOOLEAN;
 Continue : CHAR;
 BEGIN
 IF ASK Prowler TO CheckStatus <> "Op"
 OUTPUT("Aircraft already in Depot Status is being screened!");
 ASK Prowler TO MonthlyReport;
 OUTPUT("Hit RETURN to continue");
 Continue := ReadKey;
 END IF;
 ASPANumber := ASK Prowler TO GetASPA;
 TaskCondition := FALSE;
 SendToDepot := FALSE;
 FOR JobNumber := MIN(JobOrderType) TO MAX(JobOrderType)
 ASK Prowler TO SetExecuteTask(TaskCondition, JobNumber);
 ASK Prowler TO SetTaskRecord(TaskCondition, JobNumber);
 END FOR;
 IF (ASK Prowler TO GetOSPLimit) AND (ASPANumber = 1);
 ASK ASPATeam TO InspectASPA(ASPANumber,PassASPA);
 IF PassASPA
 ASK Prowler TO IncrementASPA;
 ASK Prowler TO SetPED;
 ELSE
 Rework := TRUE;
 SendToDepot := TRUE;
 TaskCondition := TRUE;

63

 END IF;
 END IF;
 IF (ASK Prowler TO GetPEDLimit) AND (ASK Prowler TO GetOSPLimit)
 ASK ASPATeam TO InspectASPA(ASPANumber,PassASPA);
 IF PassASPA
 ASK Prowler TO IncrementASPA;
 ASK Prowler TO SetPED;
 ELSE
 Rework := TRUE;
 SendToDepot := TRUE;
 TaskCondition := TRUE;
 END IF;
 END IF;
 IF ASK Prowler TO GetFLELimit AND ASK Prowler TO GetEXTLimit
 IF ASPANumber = 4
 Rework := TRUE;
 END IF;
 Rewing := TRUE;
 SendToDepot := TRUE;
 TaskCondition := TRUE;
 END IF;
 IF ASK Prowler TO GetNeedBlock
 Upgrade := TRUE;
 END IF;
 OrderNumber := ASK SELF TO GetWorkOrder(Prowler,Rework,Rewing,Upgrade);
 CASE OrderNumber
 WHEN 0:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 1:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 2:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 3:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 4:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 5:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 OTHERWISE
 END CASE;
 END METHOD;

 ASK METHOD DepotScreenPDM(IN Prowler : AircraftObj; OUT SendToDepot : BOOLEAN);
 VAR
 JobNumber : JobOrderType;
 OrderNumber : INTEGER;
 PassASPA, TaskCondition, Rework, Rewing, Upgrade : BOOLEAN;
 Continue : CHAR;
 BEGIN
 IF ASK Prowler TO CheckStatus <> "Op"
 OUTPUT("Aircraft already in Depot Status is being screened!");
 ASK Prowler TO MonthlyReport;
 OUTPUT("Hit RETURN to continue");
 Continue := ReadKey;

64

 END IF;
 TaskCondition := FALSE;
 SendToDepot := FALSE;
 FOR JobNumber := MIN(JobOrderType) TO MAX(JobOrderType)
 ASK Prowler TO SetExecuteTask(TaskCondition, JobNumber);
 ASK Prowler TO SetTaskRecord(TaskCondition, JobNumber);
 END FOR;
 IF ASK Prowler TO GetOSPLimit;
 Rework := TRUE;
 SendToDepot := TRUE;
 TaskCondition := TRUE;
 END IF;
 IF ASK Prowler TO GetFLELimit AND ASK Prowler TO GetEXTLimit
 Rewing := TRUE;
 SendToDepot := TRUE;
 TaskCondition := TRUE;
 END IF;
 IF ASK Prowler TO GetNeedBlock
 Upgrade := TRUE;
 END IF;
 OrderNumber := ASK SELF TO GetWorkOrder(Prowler,Rework,Rewing,Upgrade);
 CASE OrderNumber
 WHEN 0:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 1:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 2:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 3:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 4:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 WHEN 5:
 ASK Prowler TO SetExecuteTask(TaskCondition,VAL(JobOrderType,OrderNumber));
 OTHERWISE
 END CASE;
 END METHOD;

 ASK METHOD GetWorkOrder(IN Jet : AircraftObj; IN Rework,Rewing,Upgrade : BOOLEAN) :
 INTEGER;

 VAR
 WorkOrder : INTEGER;
 BEGIN
 IF Rework
 WorkOrder := 0;
 END IF;
 IF Rewing
 WorkOrder := 1;
 END IF;
 IF Rework AND Rewing
 WorkOrder := 2;
 END IF;
 IF Rework AND Upgrade
 WorkOrder := 3;

65

 END IF;
 IF Rewing AND Upgrade
 WorkOrder := 4;
 END IF;
 IF Rework AND Rewing AND Upgrade
 WorkOrder := 5;
 END IF;
 RETURN WorkOrder;
 END METHOD;
END OBJECT;

OBJECT InspectorObj;
 ASK METHOD ObjInit;
 BEGIN
 NEW(RandScore);
 ASK RandScore TO SetSeed(FetchSeed(8));
 END METHOD;

 ASK METHOD InspectASPA(IN ASPANumber : INTEGER;OUT Pass : BOOLEAN);
 VAR
 Score : REAL;
 BEGIN
 Score := ASK RandScore TO Sample;
 CASE ASPANumber
 WHEN 1:
 IF Score < 0.0305
 Pass := FALSE;
 ELSE
 Pass := TRUE;
 END IF;
 WHEN 2:
 IF Score < 0.1048
 Pass := FALSE;
 ELSE
 Pass := TRUE;
 END IF;
 WHEN 3:
 IF Score < 0.1471
 Pass := FALSE;
 ELSE
 Pass := TRUE;
 END IF;
 WHEN 4:
 IF Score < 0.4255
 Pass := FALSE;
 ELSE
 Pass := TRUE;
 END IF;
 WHEN 5:
 IF Score < 0.6000
 Pass := FALSE;
 ELSE
 Pass := TRUE;
 END IF;

66

 OTHERWISE
 Pass := FALSE;
 END CASE;
 END METHOD;
END OBJECT;

END MODULE.

67

DEFINITION MODULE Depot;

FROM Aircraft IMPORT AircraftObj;
FROM GrpMod IMPORT StatQueueObj;
FROM NumberMill IMPORT JobDataGeneratorObj;
FROM ResMod IMPORT ResourceObj;

TYPE
 DepotObj = OBJECT(ResourceObj);
 DepotSlots : INTEGER;
 DepotManager : DepotManagerObj;
 JobDataGen : JobDataGeneratorObj;
 ASK METHOD GetAvailability() : INTEGER;
 ASK METHOD GetCapacity() : INTEGER;
 ASK METHOD GetNonAvailability() : INTEGER;
 ASK METHOD GetJobTimes(IN Jet : AircraftObj; IN JobName : STRING);
 WAITFOR METHOD ProcessAircraft(IN Prowler : AircraftObj);
 ASK METHOD SetJobDataGen(IN JobGenerator : JobDataGeneratorObj);
 WAITFOR METHOD UpdateDepotAvailability(IN AllAircfraft : StatQueueObj; IN Process :

 INTEGER);
 OVERRIDE
 ASK METHOD ObjInit;
 END OBJECT;

 DepotManagerObj = OBJECT;
 ASK METHOD GetDepotAvailabilityASPA(IN AllAircraft : StatQueueObj) : INTEGER;
 ASK METHOD GetDepotAvailabilityPDM(IN AllAircraft : StatQueueObj) : INTEGER;
 ASK METHOD GetMaxTour(IN AllAircraft : StatQueueObj) : INTEGER;
 END OBJECT;

END MODULE.

68

IMPLEMENTATION MODULE Depot;

FROM Aircraft IMPORT AircraftObj, JobOrderType;
FROM DataManager IMPORT DataManagerObj;
FROM GrpMod IMPORT StatQueueObj;
FROM MathMod IMPORT CEIL;
FROM NumberMill IMPORT JobDataGeneratorObj;

OBJECT DepotObj;
 ASK METHOD ObjInit;
 BEGIN
 INHERITED ObjInit;
 DepotSlots := 0;
 ASK SELF TO Create(DepotSlots);
 NEW(DepotManager);
 END METHOD;

 ASK METHOD SetJobDataGen(IN JobGenerator : JobDataGeneratorObj);
 BEGIN
 JobDataGen := JobGenerator;
 END METHOD;

 ASK METHOD GetAvailability() : INTEGER;
 BEGIN
 RETURN (ASK SELF TO ReportAvailability);
 END METHOD;

 ASK METHOD GetCapacity() : INTEGER;
 BEGIN
 RETURN (ASK SELF MaxResources);
 END METHOD;

 ASK METHOD GetJobTimes(IN Jet : AircraftObj; IN JobName : STRING);
 VAR
 ManMths, ManHours, Price : REAL;
 BEGIN
 CASE JobName
 WHEN "Rework":
 ASK JobDataGen TO GetReworkTimes((ASK Jet TO GetIDT),ManMths,ManHours,Price);
 ASK Jet TO SetDepotStats(ManMths,ManHours,Price);
 WHEN "Rewing":
 ASK JobDataGen TO GetRewingTimes(ManMths,ManHours, Price);
 ASK Jet TO SetDepotStats(ManMths, ManHours, Price);
 WHEN "ReworkUpgrade":
 ASK JobDataGen TO GetReworkUpgradeTimes((ASK Jet TO GetIDT),ManMths,

 ManHours, Price);
 ASK Jet TO SetDepotStats(ManMths, ManHours, Price);
 WHEN "RewingUpgrade":
 ASK JobDataGen TO GetRewingUpgradeTimes(ManMths,ManHours, Price);
 ASK Jet TO SetDepotStats(ManMths, ManHours, Price);
 WHEN "ReworkRewing":
 ASK JobDataGen TO GetReworkRewingTimes((ASK Jet TO GetIDT),ManMths,

 ManHours, Price);
 ASK Jet TO SetDepotStats(ManMths, ManHours, Price);

69

 WHEN "ReworkRewingUpgrade":
 ASK JobDataGen TO GetReworkRewingUpgradeTimes((ASK Jet TO GetIDT),

 ManMths,ManHours, Price);
 ASK Jet TO SetDepotStats(ManMths, ManHours, Price);
 OTHERWISE
 ManMths := 0.0;
 ManHours := 0.0;
 Price := 0.0;
 END CASE;
 END METHOD;

 ASK METHOD GetNonAvailability() : INTEGER;
 BEGIN
 RETURN (ASK SELF TO NumberAllocatedTo(SELF));
 END METHOD;

 WAITFOR METHOD ProcessAircraft(IN Prowler : AircraftObj);
 VAR
 Count : INTEGER;
 WaitTime : REAL;
 TaskCondition : BOOLEAN;
 JobNumber : JobOrderType;
 BEGIN
 TaskCondition := FALSE;
 FOR JobNumber := MIN(JobOrderType) TO MAX(JobOrderType)
 IF (ASK Prowler TO GetExecuteTask(JobNumber))
 TaskCondition := TRUE;
 ASK SELF TO GetJobTimes(Prowler,ASK Prowler TO GetTaskName(JobNumber));
 WaitTime := ASK Prowler TO GetLaborMonths;
 WAIT DURATION WaitTime;
 END WAIT;
 ASK Prowler TO SetTaskRecord(TaskCondition,VAL(JobOrderType,ORD(JobNumber)));
 END IF;
 END FOR;
 END METHOD;

 WAITFOR METHOD UpdateDepotAvailability(IN AllAircraft : StatQueueObj; IN Process : INTEGER);
 CONST
 ASPA = 1;
 PDM = 2;
 VAR
 NewDepotSlots : INTEGER;
 Continue : CHAR;
 BEGIN
 IF Process = ASPA
 NewDepotSlots := ASK DepotManager TO GetDepotAvailabilityASPA(AllAircraft);
 ELSE
 NewDepotSlots := ASK DepotManager TO GetDepotAvailabilityPDM(AllAircraft);
 END IF;
 IF NewDepotSlots > ASK SELF TO ReportAvailability
 ASK SELF IncrementResourcesBy(NewDepotSlots - (ASK SELF TO ReportAvailability));
 ELSE
 IF NewDepotSlots < ASK SELF TO ReportAvailability
 WAIT FOR SELF DecrementResourcesBy((ASK SELF TO ReportAvailability) - NewDepotSlots);

70

 END WAIT;
 END IF;
 IF NewDepotSlots = ASK SELF TO ReportAvailability
 WAIT FOR SELF DecrementResourcesBy((ASK SELF TO ReportAvailability) - NewDepotSlots);
 END WAIT;
 END IF;
 END IF;
 END METHOD;

END OBJECT;

OBJECT DepotManagerObj;
 ASK METHOD GetDepotAvailabilityASPA(IN AllAircraft : StatQueueObj) : INTEGER;
 CONST
 Op = "Op";
 VAR
 MaxTourCount,TourCount,TourCountASPA1,TourCountASPA2,TourCountASPA3,
 TourCountASPA4,TourCountASPA5,Misc,Tour1Slots,Tour2Slots,Tour3Slots,Tour4Slots,

Tour5Slots,MiscSlots,Slots : INTEGER;
PT1A1,PT1A2,PT1A3,PT1A4,PT1A5,PT2A1,PT2A2,PT2A3,PT2A4,PT2A5,PT3A1,PT3A2,
PT3A3,PT3A4,PT3A5, PT4A1,PT4A2,PT4A3,PT4A4,PT4A5,PT5A1,PT5A2,PT5A3, PT5A4,
PT5A5,PTMA1,PTMA2,PTMA3,PTMA4,PTMA5 : REAL;

 Prowler : AircraftObj;
 Manager : DataManagerObj;
 BEGIN
 NEW(Manager);
 ASK Manager TO GetRates(PT1A1,PT1A2,PT1A3,PT1A4,PT1A5,PT2A1,PT2A2,PT2A3,

 PT2A4,PT2A5,PT3A1,PT3A2,PT3A3,PT3A4,PT3A5,PT4A1,
 PT4A2,PT4A3,PT4A4,PT4A5,PT5A1,PT5A2,PT5A3,PT5A4,
 PT5A5, PTMA1,PTMA2,PTMA3,PTMA4,PTMA5);

 Slots := 0;
 MaxTourCount := ASK SELF TO GetMaxTour(AllAircraft);
 TourCount := 1;
 FOR TourCount := 1 TO MaxTourCount
 FOREACH Prowler IN AllAircraft
 IF ASK Prowler TO CheckStatus = Op
 IF (ASK Prowler TO GetTour) = TourCount;
 CASE (ASK Prowler TO GetASPA)
 WHEN 1:
 INC(TourCountASPA1);
 WHEN 2:
 INC(TourCountASPA2);
 WHEN 3:
 INC(TourCountASPA3);
 WHEN 4:
 INC(TourCountASPA4);
 WHEN 5:
 INC(TourCountASPA5);
 OTHERWISE
 INC(Misc);
 END CASE;
 END IF;
 END IF;
 END FOREACH;

71

 CASE TourCount
 WHEN 1:
 Tour1Slots := CEIL(PT1A1*FLOAT(TourCountASPA1) + PT1A2*FLOAT(TourCountASPA2)+

 PT1A3*FLOAT(TourCountASPA3) + PT1A4*FLOAT(TourCountASPA4) +
 PT1A5*FLOAT(TourCountASPA5)) + Misc;

 Slots := Slots + Tour1Slots;
 WHEN 2:
 Tour2Slots := CEIL(PT2A1*FLOAT(TourCountASPA1) + PT2A2*FLOAT(TourCountASPA2) +

 PT2A3*FLOAT(TourCountASPA3+ PT2A4*FLOAT(TourCountASPA4) +
 PT2A5*FLOAT(TourCountASPA5))+Misc;

 Slots := Slots + Tour2Slots;
 WHEN 3:
 Tour3Slots := CEIL(PT3A1*FLOAT(TourCountASPA1) + PT3A2*FLOAT(TourCountASPA2) +

 PT3A3*FLOAT(TourCountASPA3+ PT3A4*FLOAT(TourCountASPA4) +
 PT3A5*FLOAT(TourCountASPA5))+Misc;

 Slots := Slots + Tour3Slots;
 WHEN 4:
 Tour4Slots := CEIL(PT4A1*FLOAT(TourCountASPA1) + PT4A2*FLOAT(TourCountASPA2) +

 PT4A3*FLOAT(TourCountASPA3) + PT4A4*FLOAT(TourCountASPA4) +
 PT4A5*FLOAT(TourCountASPA5))+Misc;

 Slots := Slots + Tour4Slots;
 WHEN 5:
 Tour5Slots := CEIL(PT5A1*FLOAT(TourCountASPA1) + PT5A2*FLOAT(TourCountASPA2) +

 PT5A3*FLOAT(TourCountASPA3) + PT5A4*FLOAT(TourCountASPA4) +
 PT5A5*FLOAT(TourCountASPA5))+Misc;

 Slots := Slots + Tour5Slots;
 OTHERWISE
 MiscSlots := CEIL(PTMA1*FLOAT(TourCountASPA1) + PTMA2*FLOAT(TourCountASPA2)

+ PTMA3*FLOAT(TourCountASPA3+ PTMA4*FLOAT(TourCountASPA4)
+ PTMA5*FLOAT(TourCountASPA5))+Misc;

 Slots := Slots + MiscSlots;
 END CASE;
 INC(TourCount);
 TourCountASPA1 := 0;
 TourCountASPA2 := 0;
 TourCountASPA3 := 0;
 TourCountASPA4 := 0;
 TourCountASPA5 := 0;
 Misc := 0;
 END FOR;
 RETURN Slots;
 DISPOSE(Manager);
 END METHOD;

 ASK METHOD GetDepotAvailabilityPDM(IN AllAircraft : StatQueueObj) : INTEGER;
 CONST
 Op = "Op";
 VAR
 Slots : INTEGER;
 Prowler : AircraftObj;
 BEGIN
 Slots := 0;
 FOREACH Prowler IN AllAircraft
 IF (ASK Prowler TO GetPED < 12) AND (ASK Prowler TO CheckStatus = Op)

72

 INC(Slots);
 END IF;
 END FOREACH;
 RETURN Slots;
 END METHOD;

 ASK METHOD GetMaxTour(IN AllAircraft : StatQueueObj) : INTEGER;
 VAR
 MaxTour : INTEGER;
 Prowler : AircraftObj;
 BEGIN
 MaxTour := 1;
 FOREACH Prowler IN AllAircraft
 IF ASK Prowler TO GetTour > MaxTour
 MaxTour := ASK Prowler TO GetTour;
 END IF;
 END FOREACH;
 RETURN MaxTour;
 END METHOD;
END OBJECT;

END MODULE.

73

DEFINITION MODULE NumberMill;

FROM RandMod IMPORT RandomObj;

TYPE
 FltDataGeneratorObj = OBJECT;
 NewLndgs, NewCats,NewFourG,NewFiveG,NewSixG,NewSevenG,NewHrs,
 MeanHrs, StdDevHrs,BetaLndgs, AlphaLndgs,BetaCats, AlphaCats,
 MeanFourG, AlphaFourG,Alpha1FiveG, Alpha2FiveG,StdDevSixG, MeanSixG,
 StdDevSevG, MeanSevG : REAL;
 ASK METHOD ObjInit;
 ASK METHOD GenUpdateData;
 RandHrs,RandLndgs,RandCats,RandFourG,
 RandFiveG,RandSixG,RandSevenG : RandomObj;
 END OBJECT;

 JobDataGeneratorObj = OBJECT;
 IDTAlpha1, IDTAlpha2, StdError1,
 StdError2, StdError3 : REAL;
 ASK METHOD ObjInit;
 ASK METHOD GetReworkTimes(IN IDT : REAL; OUT MMTHS, MMHRS, Cost : REAL);
 ASK METHOD GetRewingTimes(OUT MMTHS,MMHRS,Cost : REAL);
 ASK METHOD GetReworkUpgradeTimes(IN IDT : REAL; OUT MMTHS, MMHRS, Cost : REAL);
 ASK METHOD GetRewingUpgradeTimes(OUT MMTHS,MMHRS,Cost : REAL);
 ASK METHOD GetReworkRewingTimes(IN IDT : REAL; OUT MMTHS, MMHRS, Cost : REAL);
 ASK METHOD GetReworkRewingUpgradeTimes(IN IDT : REAL;

 OUT MMTHS, MMHRS, Cost : REAL);
 PRIVATE
 RandTime : RandomObj;
 END OBJECT;

END MODULE.

74

IMPLEMENTATION MODULE NumberMill;

FROM DataManager IMPORT DataManagerObj;
FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM MathMod IMPORT POWER;
FROM RandMod IMPORT FetchSeed;

OBJECT FltDataGeneratorObj;
 ASK METHOD ObjInit;
 BEGIN
 NEW(RandHrs);
 ASK RandHrs TO SetSeed(FetchSeed(1));
 NEW(RandLndgs);
 ASK RandLndgs TO SetSeed(FetchSeed(2));
 NEW(RandCats);
 ASK RandCats TO SetSeed(FetchSeed(3));
 NEW(RandFourG);
 ASK RandFourG TO SetSeed(FetchSeed(4));
 NEW(RandFiveG);
 ASK RandFiveG TO SetSeed(FetchSeed(5));
 NEW(RandSixG);
 ASK RandSixG TO SetSeed(FetchSeed(6));
 NEW(RandSevenG);
 ASK RandSevenG TO SetSeed(FetchSeed(7));
 END METHOD;

 ASK METHOD GenUpdateData;
 CONST
 P6G = 0.12758;
 P7G = 0.046904;
 VAR
 Prob6G, Prob7G, Tester : REAL;
 Manager : DataManagerObj;
 BEGIN
 NEW(Manager);
 ASK Manager TO GetFlightParams(MeanHrs,StdDevHrs,AlphaLndgs,BetaLndgs,AlphaCats,
 BetaCats,MeanFourG,AlphaFourG,Alpha1FiveG,Alpha2FiveG);
 REPEAT
 NewHrs := ASK RandHrs TO Normal(MeanHrs,StdDevHrs);
 UNTIL NewHrs > 0.0;
 NewLndgs := ASK RandLndgs TO Weibull(AlphaLndgs,BetaLndgs);
 NewCats := ASK RandCats TO Weibull(AlphaCats,BetaCats);
 NewFourG := ASK RandFourG TO Gamma(MeanFourG,AlphaFourG);
 NewFiveG := -0.5 +53.0 * (ASK RandFiveG TO Beta(Alpha1FiveG,Alpha2FiveG));
 IF ASK RandSixG TO Sample < P6G
 NewSixG := 1.0;
 ELSE
 NewSixG := 0.0;
 END IF;
 IF ASK RandSevenG TO Sample < P7G
 NewSevenG := 1.0;
 ELSE
 NewSevenG := 0.0;
 END IF;

75

 DISPOSE(Manager);
 END METHOD;
END OBJECT;

OBJECT JobDataGeneratorObj;
 ASK METHOD ObjInit;
 VAR
 ParamFinder : StreamObj;
 SpaceString : STRING;
 BEGIN
 NEW(RandTime);
 ASK RandTime TO SetSeed(FetchSeed(9));
 END METHOD;

 ASK METHOD GetReworkTimes(IN IDT : REAL; OUT MMTHS, MMHRS, Cost : REAL);
 VAR
 Epsilon1,Epsilon2,Epsilon3 : REAL;
 Manager : DataManagerObj;
 BEGIN
 NEW(Manager);
 ASK Manager TO GetJobParams(StdError1,StdError2,StdError3);
 IDT := IDT * 30.0;
 REPEAT
 Epsilon1 := ASK RandTime TO Normal(0.0,StdError1);
 MMHRS := 6.4297*IDT + Epsilon1;
 UNTIL MMHRS > 0.0;
 MMTHS := (0.0136 * MMHRS) * 0.0333;
 DISPOSE(Manager);
 END METHOD;

 ASK METHOD GetRewingTimes(OUT MMTHS,MMHRS,Cost : REAL);
 BEGIN
 MMTHS := 4.0;
 MMHRS := MMTHS/(0.0136*0.033);
 END METHOD;

 ASK METHOD GetReworkUpgradeTimes(IN IDT : REAL; OUT MMTHS, MMHRS, Cost : REAL);
 BEGIN
 ASK SELF TO GetReworkTimes(IDT,MMTHS,MMHRS,Cost);
 MMTHS := (MMHRS * 0.0136 * 0.033) + 0.5;
 END METHOD;

 ASK METHOD GetRewingUpgradeTimes(OUT MMTHS,MMHRS,Cost : REAL);
 BEGIN
 MMTHS := 4.5;
 MMHRS := MMTHS/(0.0136*0.033);
 END METHOD;

 ASK METHOD GetReworkRewingTimes(IN IDT : REAL; OUT MMTHS, MMHRS, Cost : REAL);
 BEGIN
 ASK SELF TO GetReworkTimes(IDT,MMTHS,MMHRS,Cost);
 MMTHS := (MMHRS * 0.0136 * 0.033) + 1.0;
 END METHOD;

76

 ASK METHOD GetReworkRewingUpgradeTimes(IN IDT : REAL;
 OUT MMTHS, MMHRS, Cost : REAL);

 BEGIN
 ASK SELF TO GetReworkTimes(IDT,MMTHS,MMHRS,Cost);
 MMTHS := (MMHRS * 0.0136 * 0.033) + 1.5;
 END METHOD;
END OBJECT;

END MODULE.

77

DEFINITION MODULE Stats;

FROM Aircraft IMPORT AircraftObj;

TYPE
 StatsObj = OBJECT
 SumTAT,SumMMTHS,SumMMHRS,
 SumOfSquaresTAT,SumOfSquaresMMTHS,SumOfSquaresMMHRS,
 MinTAT,MinMMTHS,MinMMHRS,
 MaxTAT,MaxMMTHS,MaxMMHRS: REAL;
 N: INTEGER;
 ASK METHOD ObjInit;
 ASK METHOD GetSample(IN TAT,MMTHS,MMHRS : REAL);
 ASK METHOD MeanTAT() : REAL ;
 ASK METHOD MeanMMTHS() : REAL ;
 ASK METHOD MeanMMHRS() : REAL ;
 ASK METHOD MeanMMHRSYr(IN TotalYears : REAL) : REAL;
 ASK METHOD VarianceTAT() : REAL ;
 ASK METHOD VarianceMMTHS() : REAL ;
 ASK METHOD VarianceMMHRS() : REAL ;
 ASK METHOD StdDevTAT() : REAL ;
 ASK METHOD StdDevMMTHS() : REAL ;
 ASK METHOD StdDevMMHRS() : REAL ;
 ASK METHOD Reset;
 END OBJECT;

 YearlyStatsObj = OBJECT
 SumMMHRS, SumOfSquaresMMHRS,
 SumOfSquaresVisits,
 YearMeanMMHRS, YearStdDevMMHRS,
 YearMeanVisits, YearStdDevVisits : REAL;
 N, NYear : INTEGER;
 ASK METHOD ObjInit;
 ASK METHOD GetSample(IN MMHRS : REAL);
 ASK METHOD GetYearlySample;
 ASK METHOD GetYearlyMeanMMHRS() : REAL;
 ASK METHOD GetYearlyStdDevMMHRS() : REAL;
 ASK METHOD GetYearlyMeanVisits() : REAL;
 ASK METHOD GetYearlyStdDevVisits() : REAL;
 ASK METHOD Reset1;
 ASK METHOD Reset2;
 END OBJECT;

 CumStatsObj = OBJECT
 SumCumTime, SumVisits,
 SumOfSquaresCumTime, SumOfSquaresVisits : REAL;
 N : INTEGER;
 ASK METHOD ObjInit;
 ASK METHOD GetCumSample(IN Prowler : AircraftObj);
 ASK METHOD MeanCumTime() : REAL;
 ASK METHOD MeanVisits() : REAL;
 ASK METHOD VarianceCumTime() : REAL;
 ASK METHOD VarianceVisits() : REAL;
 ASK METHOD StdDevCumTime() : REAL;

78

 ASK METHOD StdDevVisits() : REAL;
 ASK METHOD Reset;
 END OBJECT;

END MODULE.

79

IMPLEMENTATION MODULE Stats ;

FROM Aircraft IMPORT AircraftObj;
FROM MathMod IMPORT SQRT;
FROM SimMod IMPORT SimTime;

OBJECT StatsObj;
 ASK METHOD ObjInit;
 BEGIN
 Reset;
 END METHOD;

 ASK METHOD GetSample(IN TAT,MMTHS,MMHRS : REAL);
 BEGIN
 SumTAT := SumTAT + TAT;
 SumMMTHS := SumMMTHS + MMTHS;
 SumMMHRS := SumMMHRS + MMHRS;
 SumOfSquaresTAT := SumOfSquaresTAT + TAT*TAT;
 SumOfSquaresMMTHS := SumOfSquaresMMTHS + MMTHS*MMTHS;
 SumOfSquaresMMHRS := SumOfSquaresMMHRS + MMHRS*MMHRS;
 MinTAT := MINOF(TAT,MinTAT);
 MaxTAT := MAXOF(TAT,MaxTAT);
 MinMMTHS := MINOF(MMTHS,MinMMTHS);
 MaxMMTHS := MAXOF(MMTHS,MaxMMTHS);
 MinMMHRS := MINOF(MMHRS,MinMMHRS);
 MaxMMHRS := MAXOF(MMHRS,MaxMMHRS);
 N := N +1;
 END METHOD;

 ASK METHOD MeanTAT() : REAL ;
 BEGIN
 RETURN SumTAT/FLOAT(N);
 END METHOD;

 ASK METHOD MeanMMTHS() : REAL ;
 BEGIN
 RETURN SumMMTHS/FLOAT(N);
 END METHOD;

 ASK METHOD MeanMMHRS() : REAL ;
 BEGIN
 RETURN SumMMHRS/FLOAT(N);
 END METHOD;

 ASK METHOD MeanMMHRSYr(IN TotalYears : REAL) : REAL;
 BEGIN
 RETURN (SumMMHRS/TotalYears);
 END METHOD;

 ASK METHOD VarianceTAT() : REAL ;
 BEGIN
 RETURN (SumOfSquaresTAT - SumTAT*SumTAT/FLOAT(N))/FLOAT(N-1);
 END METHOD;

80

 ASK METHOD VarianceMMTHS() : REAL ;
 BEGIN
 RETURN (SumOfSquaresMMTHS - SumMMTHS*SumMMTHS/FLOAT(N))/FLOAT(N-1);
 END METHOD;

 ASK METHOD VarianceMMHRS() : REAL ;
 BEGIN
 RETURN (SumOfSquaresMMHRS - SumMMHRS*SumMMHRS/FLOAT(N))/FLOAT(N-1);
 END METHOD;

 ASK METHOD StdDevTAT() : REAL ;
 BEGIN
 RETURN SQRT(VarianceTAT());
 END METHOD;

 ASK METHOD StdDevMMTHS() : REAL ;
 BEGIN
 RETURN SQRT(VarianceMMTHS());
 END METHOD;

 ASK METHOD StdDevMMHRS() : REAL ;
 BEGIN
 RETURN SQRT(VarianceMMHRS());
 END METHOD;

 ASK METHOD Reset;
 BEGIN
 SumTAT := 0.0;
 SumMMTHS := 0.0;
 SumMMHRS := 0.0;
 SumOfSquaresTAT := 0.0;
 SumOfSquaresMMTHS := 0.0;
 SumOfSquaresMMHRS := 0.0;
 MinTAT := MAX(REAL);
 MinMMTHS := MAX(REAL);
 MinMMHRS := MAX(REAL);
 MaxTAT := MIN(REAL);
 MaxMMTHS := MIN(REAL);
 MaxMMHRS := MIN(REAL);
 N := 0;
 END METHOD;
 END OBJECT;

OBJECT YearlyStatsObj;
 ASK METHOD ObjInit;
 BEGIN
 Reset1;
 END METHOD;

 ASK METHOD GetSample(IN MMHRS : REAL);
 BEGIN
 SumMMHRS := SumMMHRS + MMHRS;
 SumOfSquaresMMHRS := SumOfSquaresMMHRS + MMHRS*MMHRS;
 N := N + 1;

81

 SumOfSquaresVisits := SumOfSquaresVisits + FLOAT(N*N);
 END METHOD;

 ASK METHOD GetYearlySample;
 BEGIN
 IF SumMMHRS = 0.0
 YearMeanMMHRS := YearMeanMMHRS + 0.0;
 YearStdDevMMHRS := YearStdDevMMHRS + 0.0;
 YearMeanVisits := YearMeanVisits + 0.0;
 ELSE
 YearMeanMMHRS := YearMeanMMHRS + SumMMHRS/FLOAT(N);
 YearMeanVisits := YearMeanVisits + FLOAT(N);
 IF N <= 1
 YearStdDevMMHRS := YearStdDevMMHRS + 0.0;
 YearStdDevVisits := YearStdDevVisits + 0.0;
 ELSE
 YearStdDevMMHRS := YearStdDevMMHRS +
 SQRT((SumOfSquaresMMHRS - SumMMHRS*SumMMHRS/FLOAT(N))/FLOAT(N-
1));
 YearStdDevVisits := YearStdDevVisits +
 SQRT((SumOfSquaresVisits - FLOAT(N*N)/FLOAT(N))/FLOAT(N-1));
 END IF;
 END IF;
 NYear := NYear + 1;
 ASK SELF TO Reset2;
 END METHOD;

 ASK METHOD GetYearlyMeanMMHRS() : REAL;
 BEGIN
 RETURN YearMeanMMHRS/FLOAT(NYear);
 END METHOD;

 ASK METHOD GetYearlyStdDevMMHRS() : REAL;
 BEGIN
 RETURN YearStdDevMMHRS/FLOAT(NYear);
 END METHOD;

 ASK METHOD GetYearlyMeanVisits() : REAL;
 BEGIN
 RETURN YearMeanVisits/FLOAT(NYear);
 END METHOD;

 ASK METHOD GetYearlyStdDevVisits() : REAL;
 BEGIN
 RETURN YearStdDevVisits/FLOAT(NYear);
 END METHOD;

 ASK METHOD Reset1;
 BEGIN
 SumMMHRS := 0.0;
 SumOfSquaresMMHRS := 0.0;
 SumOfSquaresVisits := 0.0;
 YearMeanMMHRS := 0.0;
 YearStdDevMMHRS := 0.0;

82

 YearMeanVisits := 0.0;
 YearStdDevVisits := 0.0;
 N := 0;
 END METHOD;

 ASK METHOD Reset2;
 BEGIN
 SumMMHRS := 0.0;
 SumOfSquaresMMHRS := 0.0;
 SumOfSquaresVisits := 0.0;
 N := 0;
 END METHOD;
 END OBJECT;

OBJECT CumStatsObj;
 ASK METHOD ObjInit;
 BEGIN
 Reset;
 END METHOD;

 ASK METHOD GetCumSample(IN Prowler : AircraftObj);
 BEGIN
 SumCumTime := SumCumTime + ASK Prowler TO GetCumTimeInDepot;
 SumVisits := SumVisits + ASK Prowler TO GetNumVisits;
 SumOfSquaresCumTime := SumOfSquaresCumTime + (ASK Prowler TO GetCumTimeInDepot)
 *(ASK Prowler TO GetCumTimeInDepot);
 SumOfSquaresVisits := SumOfSquaresVisits + (ASK Prowler TO GetNumVisits)
 *(ASK Prowler TO GetNumVisits);
 N := N + 1;
 END METHOD;

 ASK METHOD MeanCumTime() : REAL ;
 BEGIN
 RETURN SumCumTime/FLOAT(N);
 END METHOD;

 ASK METHOD MeanVisits() : REAL ;
 BEGIN
 RETURN SumVisits/FLOAT(N);
 END METHOD;

 ASK METHOD VarianceCumTime() : REAL ;
 BEGIN
 RETURN (SumOfSquaresCumTime - SumCumTime*SumCumTime/FLOAT(N))/FLOAT(N-1);
 END METHOD;

 ASK METHOD VarianceVisits() : REAL ;
 BEGIN
 RETURN (SumOfSquaresVisits - SumVisits*SumVisits/FLOAT(N))/FLOAT(N-1);
 END METHOD;

 ASK METHOD StdDevCumTime() : REAL ;
 BEGIN
 RETURN SQRT(VarianceCumTime());

83

 END METHOD;

 ASK METHOD StdDevVisits() : REAL ;
 BEGIN
 RETURN SQRT(VarianceVisits());
 END METHOD;

 ASK METHOD Reset;
 BEGIN
 SumCumTime := 0.0;
 SumVisits := 0.0;
 SumOfSquaresCumTime := 0.0;
 SumOfSquaresVisits := 0.0;
 N := 0;
 END METHOD;
 END OBJECT;

END MODULE.

84

85

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Defense Logistics Studies Information Exchange 1
U.S. Army Logistics Management Center
Fort Lee, VA 23801

4. Professor Arnold H. Buss, Code OR/Bu 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

5. RADM Donald Eaton USN (Ret), Code SM/ET 1
Department of Systems Management
Naval Postgraduate School
Monterey, CA 93940

6. Professor Samuel H. Parry, Code OR/Py 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

7. Mr. Richard Massaro, Air 3.1.1H 1
Naval Air Systems Command Headquarters
1421 Jefferson Davis Highway
Arlington, VA 22243

8. LCDR Mark Nye 1
EA-6B Program Office, 04B
NADEP Jacksonille, FL 32212-0016

9. Professor David A. Schrady, Code OR/So 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

86

10. Professor Lyn R. Whitaker, Code OR/Wh 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

11. Deputy Chief of Naval Operations (Logistics) 1
ATTN: CDR Robert Drash N422C
Navy Pentagon
Washington, D.C. 20350-2000

12. LCDR Michael D. Walls, USN 1
5708 Caddoan Road
Virginia Beach, VA 23462

